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Abstract 

This paper describes two systems to recover Internet 
connectivity impaired, especially in distributed 
computing, by private networks and firewalls. Private 
networks and firewalls brought Internet asymmetry 
and made peer-to-peer computing difficult or even 
impossible to work across private network boundaries 
or over firewalls. Condor is one of those that are 
severely impaired by the asymmetry. Compared to 
normal peer-to-peer computing applications, Condor 
has stricter requirements set, which, we believe, is 
representative to any grid computing. To make Condor 
seamlessly work across private networks and over 
firewalls, we designed and implemented Dynamic Port 
Forwarding (DPF) and Generic Connection Brokering 
(GCB). Both DPF and GCB satisfy the representative 
requirements. Furthermore DPF supports dedicated 
large cluster very well because it is simple, efficient, 
and highly scalable. On the other hand, GCB perfectly 
supports non-dedicated or virtual cluster because it is 
independent to private network or firewall 
technologies and does not require any administrative 
power to deploy it. In this paper, we describe the 
implementations of DPF and GCB and analyze them 
with respect to performance, deployability, scalability, 
and etc. 

1. Introduction 
Since private networks were introduced, many 
institutions have deployed them to solve IPv4 address 
shortage and to improve security. Also firewalls are 
usually deployed with Network Address Translator 
(NAT) [RFC1631] based private networks in order to 
hides internal machines and more importantly to 
provide a choke point where firewall policies can be 
applied. 

Though private network was conceived as a 
temporary solution to the address shortage problem 
and the IPv6 project is a massive effort to solve the 
problem in a permanent way, many experts predict that 
it will persist even after the full deployment of IPv6 for 
its easy network manageability and economic reasons 
[FRNGUM]. We believe that grid computing gives one 
of the most convincing examples that support this 
argument. Grid is the infrastructure that enables 
coordinated resource sharing and problem solving in 

dynamic, multi-institutional virtual organizations 
[FSTKSS]. In grid computing, pools of hundreds or 
thousands machines are not rare. All or some of those 
machines are dedicated to grid computing and have 
much less reason to have world addressable IP 
addresses than those owned by individuals and used 
for general applications and daily use. Administrators 
of those pools would prefer private network 
configuration because they can easily manage their 
clusters and also reduce the cost by paying for only 
several public IP addresses for head nodes instead of 
hundreds or thousands ones. 

Private network and firewall, however, damaged 
Internet connectivity and made it asymmetric. Internet 
was originally designed as being symmetric at least 
above the transport layer, i.e. if a process A can talk to 
B, then B is always able to talk to A. This symmetry, 
however, is no more guaranteed if A is inside a private 
network or behind a firewall, because NAT or firewall 
usually blocks all or some of inbound communications. 
Among others, Peer-to-Peer (P2P) computing may be 
the most damaged one by the asymmetry because, in 
P2P, any process needs be able to talk to any other. 
Condor system [LIVNY] [LTZLVN], in which 
virtually every machine must be able to communicate 
with each other, is a P2P application by nature and 
damaged by the asymmetry. 

As a grid system, Condor has the following 
requirements for any solution to recover Internet 
connectivity, in addition to those required by regular 
P2P systems. We believe that all of the requirements 
listed below are common to any grid approach and, at 
our best knowledge, no single system so far satisfies 
all of them. 

1. The solution must be highly scalable. Condor 
clusters with hundreds of nodes are very 
common and ones with thousands exist. 
Furthermore, flocking [EPMLEP] makes 
clusters even bigger by putting existing ones 
together. Hence we can’t use an approach that 
assumes small number of machines inside 
private network or behind firewall. 

2. It must provide a way to communicate with 
(existing) regular sockets. Many different 
versions of Condor clusters have already been 
installed and are running all over the world, and 
they need be able to communicate with new 



clusters with private network and firewall 
support. Hence the solution must provide a way 
to communicate with existing sockets without 
any change to them. 

3. Changes to network components must be 
minimized and any change to kernel or having 
system-wide impact is not allowed. Condor does 
not require any kernel change or even root 
privilege to run it, and this was turned out to be 
one of the most important features of Condor’s 
success. We want to keep this advantage and 
would not take any approach that hurts easy 
deployment of Condor. 

To bring symmetry back to Condor, we 
implemented two different approaches, DPF (Dynamic 
Port Forwarding) and GCB (Generic Connection 
Brokering), which have different characteristics in 
terms of clusters supported, security, performance, and 
etc. so that institutions may choose the better one 
depending on their policies and situations. 

Firewall and NAT based private network are 
essentially the same from the perspective of impacts on 
grid computing. Also connectivity loss due to private 
network is considered more severe because 
connections blocked are side effects of private network. 
Hence the following discussions are made in the 
context of NAT based private network. In section 2, 
we briefly explain previous works. DPF and GCB are 
explained in section 3 and 4, respectively. Some 
experimental results are presented in section 5. 

2. Previous Works 
Many researches and developments have been done or 
being carried out to recover Internet connectivity. 
Some systems took local or fill-the-gap approaches, 
requiring changes to components within an 
institution’s administration domain. Other systems 
took global approaches and require major changes to 
Internet or need agreement between various 
institutions. For example, TRIAD [CHRGRT, 
GRTCHR] and IP Next Layer (IPNL) [FRNGUM] use 
name-based and realm-to-realm routing to make 
inbound communications possible and propose 
changes to Internet protocol stack.  Address 
Virtualization Enabling Service (AVES) [EUGSTO] 
uses proxy and packet rewriting technique and requires 
changes to DNS servers and NAT machines. Because 
global approaches will take years to be accepted by 
large community and because they fail to satisfy the 
last requirement in section 1, we will only consider 
local approaches in this section. 

2.0 Global approaches (Informational and optional) 
TRIAD [CHRGRT, GRTCHR] proposes to hide IP 
address from applications and use URL as the sole 

network end-to-end identity. It uses URL based routing 
to setup connections and semi source routing to deliver 
packets of the connection. In TRIAD, connection is 
established by cooperating name servers as part of 
name lookup operation and address path, a realm-to-
realm source route, is returned as the result of the 
connection. Packets of the connection are relayed 
according to the address path, which is a part of packet 
header. To support NAT, NAT machines must act as 
the TRIAD name server and relay point. In addition to 
the changes of NAT machines, client machines must 
be changed too because TRIAD proposes the change to 
Internet protocol stack. 

IP Next Layer (IPNL) [FRNGUM] views Internet 
as a hierarchical connection of realms, where each 
private network becomes a realm, possibly containing 
sub-realms, and public network is a middle realms 
connecting private realms at the highest hierarchy, and 
proposes to add IPNL layer, between (inter) 
networking and transport layer, that performs inter-
realm routing and name-based routing. In IPNL, 
network endpoint is uniquely defined both by FQDN 
and IPNL address, which basically explains where the 
endpoint is located in the hierarchy. Like TRIAD, 
IPNL uses name based routing for connection and uses 
more efficient IPNL address to transfer packets once 
the connection is established. Basic idea to support 
private networks is to make NAT machines as IPNL 
router, which performs name-based routing and relays 
packets between realms that can’t normally 
communicate with each other directly. 

Unlike TRIAD and IPNL, Address Virtualization 
Enabling Service (AVES) [EUGSTO] does not require 
changes on Internet protocol stack, but still requires 
changes of major network components such as DNS 
server and NAT. In AVES, public IP address of the 
waypoint is leased to the private machine at the time of 
DNS query by the connector, through the cooperation 
of DNS server and the waypoint chosen by the server. 
DNS server answers the leased IP address to the 
connector. Inbound connection is made by waypoint’s 
rewriting and then relaying of the packet, which is sent 
from the connector to the waypoint. NAT machine for 
the private machine is also need to change so that it 
may understand AVES protocol and pass packets from 
the waypoint to the real destination. 

2.1 Application-specific connection brokering 
Napster [NAPSTR] server acts as a connection broker 
for its clients. Normally it arranges that a downloading 
site make a connection to an uploading site. However, 
when the uploader is inside private network, it asks the 
uploader to push files to the downloader in public 
network. Gnutella [GNUTLL] also uses the same idea, 
but without any server. When an uploader is inside 



private network, the downloader in public network 
asks the uploader to actively push a file. This approach 
is very simple and has little overhead. This can also be 
used with any private network technique and requires 
no change to network components. However, it has a 
few disadvantages, which make this approach fail to 
satisfy those requirements in section 1, including: 

It is an application specific approach. Any 
application that wants to apply this idea needs to 
implement its own version of connection 
brokering. 
It is not interoperable with regular sockets. Since 
every node, including clients and server, needs to 
follow an application-specific protocol of 
brokering, no regular socket that is ignorant of the 
protocol could be brokered. 
Without additional help such as relay or 
rendezvous service, private-to-private connection 
is impossible. 

2.2 SOCKS 
IETF took SOCKS [RFC1928] as a standard for 
performing network proxies at the transport layer. 
Basic idea is that the SOCKS server, which must be 
placed at the outskirts of a private network, plays as a 
relay point at transport layer between machines inside 
private network and those at public network. When a 
node A at public network wants to connect to B behind 
a SOCKS server, A sends connection request to the 
SOCKS server. Then the server establishes two 
transport connections: one with A and the other with 
B, and then relays packets between them. The 
initiation of UDP communication is handled in a 
similar manner. 

SOCKS has several advantages. First of all, it can 
be viewed as an application independent approach 
because applications need not be rewritten to use 
SOCKS. SOCKS people call applications that become 
aware of SOCKS protocol socksified. Application can 
be socksified either by changing its codes, by relinking 
with SOCKS library, or by modifying system’s 
dynamic library path so that SOCKS library is used 
instead of regular network library. Another advantage 
is that it is a mature system, because it has been used in 
many applications and institutes. Currently commercial 
products are available as well as research systems. 
Finally it is private network technology independent 
and can be used with or even without any NAT-like 
proxy. When it is used without a NAT-like proxy, 
private-to-public connections as well as public-to-
private ones are relayed by the server. 

It, however, has a few drawbacks, which makes it 
fail to satisfy our requirements: 

It is not highly scalable. Every socket whose 
packets are relayed by a SOCKS server needs to 

maintain a management TCP connection with the 
server during its lifetime. In every operating 
system the number of TCP connections opened at 
the same time is limited and thus the maximum 
number of sockets supported by a SOCKS server 
is limited by this number. 
Regular socket on the public side cannot initiate 
communication to SOCKS client at the private 
side. With SOCKS, clients inside private network 
need not be changed at all. Nodes at public side, 
however, must be aware of SOCKS protocol and 
this violates our important requirement. 

We believe that the last constraint of SOCKS 
shows that it was originally invented for client-server 
model as hinted in [RFC1928] rather than P2P 
computing, because, in P2P, clients at public side are 
usually indefinite and it is usually impossible to make 
changes to every public peer application or node. 

2.3 Realm Specific IP (RSIP) 
Realm Specific IP (RSIP) [RFC3102, RFC3103, 
BRLMNT] has been proposed and adopted by IETF as 
a standard way to solve NAT problems, especially 
those related to IPSec [RFC2401] and inbound 
connection. 

The client inside private network leases one or 
more public IP addresses and ports from RSIP server 
when the system boots up or dynamically when it 
needs them, and uses those leased address as network 
endpoint identities. The RSIP server maintains 
mapping between leased addresses and leaser address 
to handle inbound communications to the leaser. When 
the leaser needs to send a packet to a public peer, it 
prepares the packet as if it is from one of those leased 
addresses and then sends it through the tunnel to RSIP 
server. Upon receiving a packet through the tunnel, the 
server stripes off the tunnel header and forwards it to 
public network. Inbound communications, including 
replies from the public peer, are handled in the reverse 
way. The server wraps the received packet using the 
leaser’s address from the mapping and sends it to the 
leaser. Then the leaser unwraps the tunnel header and 
passes the resulting packet to the application. 

In addition to the support for inbound 
communications, RSIP solves NAT’s incompatibility 
with IPSec [RFC3104]. Since RSIP server relays 
packets untouched, other than ripping off extra header 
for tunneling, end-to-end security at IP level required 
by IPSec can be easily achieved. 

RSIP also supports nested private networks by 
cascading RSIP servers. [RFC3102] also recommends 
that RSIP server be compatible with NAT clients so 
that it may support private networks with the 
combination of RSIP enabled sockets and regular ones. 



RSIP has many desirable characteristics as 
explained above. It is, however, still an ongoing effort 
and more importantly it was proposed as a substitute of 
NAT. Though RSIP can be implemented as an 
extension to NAT for some NAT implementations 
such as iptables in Linux 2.4, generally RSIP should 
replace well-tested NAT. We don’t believe that, in a 
near future, it will be developed for every major 
platform and becomes prevalent so network 
administrators are willing to use RSIP instead of NAT. 

3. Dynamic Port Forwarding (DPF) 
For easy explanation, we introduce two notations 
below and use them throughout the paper. A:B  
represents a pair of IP address A and port number B. 
[A:B > C:D] represents a mapping or translation rule 
from A:B to C:D. 

NAT port forwarding is a combination of packet 
rewriting and routing mechanism based on ports as 
well as IP addresses, and is the most popular way, if 
not the best nor the sole way, to make inbound 
communication possible in NAT. When an NAT 
gateway receives a packet destined to Nip:Nport and 
has a forwarding rule [Nip:Nport > ipX:portY], it 
rewrites the destination as ipX:portY and routes the 
rewritten packet toward IP address ipX. Hence 
machines inside private network can accept inbound 
communications by setting port forwarding rule at 
NAT gateway. 

At our best knowledge, port forwarding must be set 
/unset by administrator in a static way and can be used 
when user knows both (the range of) port numbers the 
application running in private node uses and how long 
it uses them. On the contrary, DPF uses NAT port 
forwarding in dynamic way and does not require user’s 
such knowledge. 

3.1 Architecture 
Fig-1 shows a Condor pool managed by a central 
manager and composed of machines inside private 
network as well as those in public network. You can 
also think the node in public network as a condor node 
that flocked to this pool. Condor nodes inside private 
network are DPF enabled, while those in public 
network need not be. We will call DPF-enabled 
Condor nodes DPF clients. Central manager can be 
placed anywhere in the administration domain: inside 
private, in public, or on the boundary of private 
network. DPF server is a process, running with root 
privilege on the NAT gateway. 

DPF server manages a private network or part of it 
and acts as a proxy for clients within it. A private 
network can be partitioned and managed by multiple 
DPF servers, however a server can manage at most one 
network. 

When a DPF client binds a sockets to a local 
ip:port, it sends to the DPF server forwarding requests 
with its local ip:port and optional desired public 
ip:port. DPF server sets port forwarding rule by calling 
NAT’s API and replies failure with an appropriate 
error code, if it can’t set the rule as requested. If 
succeed, it registers the client and replies success with 
public ip:port through which nodes in public network 
can connect to the client. 

The client uses the public ip:port instead of the 
local ip:port as its endpoint identity at the application 
layer. That is, the client uses the ip:port whenever it 
needs to notify its communication endpoint to its peer 
or to information server such as the central manager. 
However, unlike RSIP, the client can still use regular 
socket calls to send packets because NAT will 
automatically modify packets when they traverse 
through it. 

Now Condor nodes in public network can connect 
to DPF clients by sending packets to the public ip:port, 
which they can obtain from the central manager or 
through another connection to the clients that was 
established before. 

For efficient communication within a private 
network, client inside private network sends to the 
server the query with peer’s ip:port. Server answers the 
query with the local ip:port of the peer if the peer is 
registered to the server, i.e. the peer is in the same 
private network, otherwise it answers NAK. If the 
server answers success, the client connects to the peer 
using the local ip:port instead of that known to public. 

3.2 Implementation (Optional) 

3.2.1 DPF client 
Each socket of DPF client is coupled to a management 
socket, a passive TCP socket, and shares its lifetime 
with the management socket. That is, it is created, 

DPF Server

Command
Result

Command &
Result

NAT

Port Forwarded
Connection

Private network

Direct
Connection

Central
Manager Advertise

Proxy
ip:port

Get Proxy
ip:port Condor

Node

Condor
Node

Condor
Node

DPF Server

Command
Result

Command &
Result

NAT

Port Forwarded
Connection

Private network

Direct
Connection

Central
Manager Advertise

Proxy
ip:port

Get Proxy
ip:port Condor

Node
Condor

Node

Condor
Node

Condor
Node

Condor
Node

Condor
Node

[Fig-1] Architecture of DPF 



duplicated, inherited, and closed together with its peer: 
the management socket. Because it is guaranteed that 
the client socket is in use as long as the peer is open, 
DPF server is able to know that the socket is no longer 
in use when it cannot connect to its peer. This 
approach is a little inefficient than SOCKS, where each 
client socket has its management socket connected to 
SOCKS server during its lifetime, because DPF server 
must go through TCP connection setup process each 
time it wants to know whether a client socket is still in 
use. However, the server becomes much more scalable 
because it need not have as many auxiliary sockets 
open as client sockets in use. Also notice that DPF 
clients need not pay attention to the management 
sockets, because the kernel will accept connections to 
it as long as it open. 

Passive DPF client sockets, i.e. UDP and listening 
TCP sockets, have port forwarding rules at the server 
and are publicly represented by public ip:port returned 
by the server. To make sure that the correct ip:port be 
advertised to the client’s peer or central manager, DPF 
client asks the server to set a port forwarding rule right 
after it binds a socket to local ip:port. To maintain only 
necessary rules at the server, however, the client asks 
the server to delete the rule for the socket when the 
application makes it active, for example application 
calls ‘connect’ in Unix. 

3.2.2 DPF server 
DPF server is implemented as a daemon process 
running with root privilege on a machine with Linux 
2.2 or higher and NAT enabled. Also the server must 
be placed where it can directly communicate with 
clients. 

To handle client’s request efficiently, the server 
maintains the mapping table, which contains port 
forwarding rules and client information that owns the 
rule. It also has the mirror file of the mapping table to 
make DPF run gracefully in the face of server failure 
and/or NAT machine reboot. As a result, we have three 
representations of port forwarding on server machine: 
the mapping table, the mirror file, and the kernel table 
of forwarding rule. The mapping table and the mirror 
file contain the same information almost all the time, 
which the kernel table has less information on each 
rule but may have more rules because rules may be set 
by methods other than DPF such as manually set for 
ssh server by administrator. DPF server is deliberately 
implemented so that the consistency between those 
three representations is maintained and the appropriate 
representation is used each time as explained below. 

Queries from clients are answered based on the 
mapping table. 

The addition of a rule is recoded in the order or the 
mapping table, the mirror file, and the kernel table. 

This order was carefully chosen to make system fault-
tolerant and efficient. Because our design allows reuse 
of forwarding rules, the server stops modifying 
representation as soon as possible. If the same rule in 
the mapping table as the one being added is found, it 
reuses the rule and modifies nothing. On the other 
hand, if a rule with the same public ip:port as the new 
one but different client information is found, the server 
reuses the rule with modification only to the mapping 
table and the mirror file. If no match is found, it will 
add a new rule and modify all representations.  

The deletion of rules is applied in the order of the 
mapping table, the kernel table, and the mirror file. 
Unlike the case of the addition, all the representations 
are modified. 

The server replies to clients after modifying all the 
necessary representations to maintain the consistency 
with them. The addition and deletion orders above also 
guarantee the consistency among three representations 
in the server as well, because the mapping table and 
the kernel table are synchronized to the mirror file as 
explained below. Note that garbage rules may remain 
in the server if the server fails or system crashes after 
the mirror file is updated but answer is sent to the 
client. This causes no problem because the server 
periodically probes client sockets by making TCP 
connections to their peers and deletes those not in use 
by clients. 

3.2.2.1 synchronization 
The DPF server synchronizes three representations 

right after the periodic probe of client sockets. The 
synchronization is performed based on the contents of 
the mirror file. 

For performance reason, new rules are always 
appended to the mirror file. As a result of this, rules 
overwritten by new rules due to the reuse of rules 
explained above may still remain in the mirror file. 
Hence the first step of synchronization is to delete all 
deprecated rules from the file. After that, the mapping 
table and the kernel table are synchronized to the 
mirror file. Note that the rules that are in the kernel 
table but not in the mirror file should not be deleted 
since they might be added by other methods. 

4. Generic Connection Brokering (GCB) 
Generic Connection Brokering (GCB) uses the idea 
similar to that of Napster, that is, the connection broker 
arranges which party should initiate a communication 
based on network situation of each party. To solve the 
interoperability problem of application-specific 
connection brokering system such as Napster and 
Gnutellar, GCB uses the idea of layer injection. By 
introducing GCB layer between application and 
system-call library, GCB makes connection 



establishment at the application layer orthogonal to 
real connection setup at the kernel level. In other 
words, application program can call connect or accept, 
depending on the semantics of the application layer, 
without worrying about whether it can reach to or can 
be reached from its peer. GCB layer determines 
whether it should make a connection to or accept 
connection from the peer. 

4.1 Architecture 
Fig-2 shows a typical Condor pool using GCB. The 
pool has three Condor nodes, two inside private 
network and one in public, and is managed by a central 
manager node on the top. Fig-2 also shows a node on 
lower left that flocks from another pool. All nodes 
except the flocking node are GCB enabled and 
brokered by the GCB server. You may view the 
flocking node as another type of public node of the 
pool that is not aware of GCB protocol. We will call 
those nodes, which know GCB protocol and are 
managed by the GCB server, GCB clients. 

GCB server generally manages clients within an 
administrative domain and arranges connections to 
those clients either from a process within the domain 
or outside the domain by arbitrating who should 
actively connect. Unlike DPF server, GCB server is a 
normal user process and can be placed either in public 
network or on the boundary between private and public 
network. 

For easy explanation, let us call the processes 
willing to accept connections listeners and those trying 
to connect to one of listeners connectors. 

GCB enabled listener registers the passive socket at 
its GCB server by sending a register request to the 
server. Upon receiving the register request, the server 
creates a proxy socket of the same type as the client 
socket, binds it, make it passive, and returns the 
address the proxy socket is bound to. From now on, the 
listener uses the proxy address as its network identity. 

In other words, whenever it needs to inform other 
processes of its address, it sends the proxy address 
instead of its real address. 

When another GCB client, a connector, wants to 
connect to the listener, it asks the listener’s GCB 
server to broker the connection by sending connect 
request. The listener’s GCB server can be contacted 
using the same IP address as the listener’s proxy IP 
and the predefined port. The server decides, based on 
network situation of the connector and the listener, 
who should actively connect and arranges accordingly. 
If either cannot connect to the other because, for 
example, both are inside private networks, it lets both 
parties connect to the server and relays packets 
between them. 

Since normal connectors do not know GCB 
protocol and think the proxy address of the listener as 
the real address, they will directly connect to the proxy 
socket that the server created when the listener 
registered its socket. Upon accepting a direct 
connection to the proxy socket, the server will ask the 
corresponding client to connect to the server and then 
will relay the packets between two connections. 

Connection between GCB enabled connector and 
normal listener is established in a little ugly way. Since 
the connector thinks the listener’s address as proxy 
one, it will try but fail to contact the listener’s GCB 
server. When there is no process using the supposed-
to-be GCB server’s address, it will take one round trip 
time (RTT) for the connector to detect that the listener 
is not a GCB client. However, if any process happens 
to use the address, the connector needs a little more 
time to detect that the server does not understand 
Reliable UDP (RUDP) protocol that we implemented 
for exchanging GCB commands. 

We understand drawbacks of our approach. First, 
network addresses are wasted because the real address 
of the listener in public network is unnecessarily 
hidden by proxy address. Second, connections to 
listeners in public network need not be brokered. 
Lastly, connections to normal listeners are slow due to 
the unnecessary RTT waste. If we used the 
combination of the real address and the proxy address 
as the network identity of GCB client, we would not 
have had these problems. However, we took this 
inefficient approach because this scheme allows us to 
use legacy socket address and gives us a great chance 
to extend GCB to be used any application. 
Furthermore, the uniform indirection gives sockets 
mobility. Suppose a process moving around machines. 
This type of process is very common in grid 
computing. Since the process can use the same address 
regardless of its location and connections to it will be 
appropriately brokered based on its current location, 
other processes can always make connections to it. 
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4.2 Implementation  (Optional) 

4.2.1Client Implementation 
As shown in Fig-3, a GCB client has a pool of records 
of listening sockets and a list of blocked passive 
connections. Each listening socket is tightly coupled 
with a management socket and has the exactly same 
fate as its management socket, that is, they are created, 
duplicated, inherited, and closed together. The 
management socket, a UDP socket that uses reliable 
protocol we developed, is used for GCB command 
exchange with GCB server. It is also used to 
periodically send heartbeats to the server so that the 
server may be able to send asynchronous commands to 
the client and may also know that the listening socket 
is open and in use. Note that GCB server may be 
placed where it cannot directly talk to clients and, in 
this case, it can only send asynchronous commands to 
clients through UDP holes clients have made by 
initiating communication. 

The record also has a connection queue, UDP 
message buffer, and UDP receiver list. The connection 
queue is only valid for TCP sockets while UDP 
message buffer and receiver list for UDP sockets. 
Notice that there are passive and active connections in 
GCB. Passive connections are maintained by the 
kernel and taken from kernel’s queue by socket call 
accept in Unix while active ones, which are established 
in the reverse way by listener connecting to the 
connector, must be established and maintained by 
GCB module. Regardless of their types, connections 
should be returned to the application in the order that 
they were established. GCB client stores both active 
and passive connections in the connection queue in the 
order that they are established, and returns the one 
from the head of the queue to the application. 

Since DUMMY messages can be received at a 
UDP socket anytime, GCB client must examine UDP 
packets received and acknowledge DUMMY packets 
or stash data packet somewhere to pass them to the 
application when requested. This is what UDP buffer is 
for. 

UDP receiver list is a collection of records of peers 
who have recently communicated with the owner of it. 
Among other things, the record contains mappings 
between peer’s public and local address. When the 
application wants to send UDP data to a receiver, GCB 
client searches UDP receiver list to find the record of 
the recipient. If it finds the record, it sends the packet 
to the local address of the record. If it can’t find, it 
performs GCB connection setup procedure explained 

in section 4.2, adds a new record for the recipient to 
the receiver list, and then sends data through the 
channel established. Because GCB client does not 
know when a peer’s record becomes invalid, it deletes 
the record when it encounters a network error with 
sending or receiving using the record. It also 
periodically flushes the list, for the same reason, and 
adds new records later when it needs to send 
something to deleted peers. 

In GCB, commands from the server, DUMMY, 
DUMMY_ACK, new connection, normal UDP data 
packets, etc. can arrive anytime. This fact requires 
GCB client to be always prepared to handle any of 
those asynchronous events and makes its 
implementation very complex. Asynchronous Event 
Handler (AEH) is the routine that handles those events 
and is called once or more by every GCB client 
routines. 

As explained earlier, GCB client is implemented in 
a generic way so that any application can use it to 
communicate across private network boundary. To 
achieve this goal, we overloaded socket calls so that 
they follow GCB protocol. We also changed blocking 
socket calls such as connect, select, recv, etc. so that 
they periodically call AEH and also send periodic 
heartbeats to the server. 

4.2.2 Server Implementation 
GCB server is composed of client socket records, each 
of which is created per client’s listening sockets, and 
two functional modules: broker and relay module. 
Broker module handles all GCB commands from 
clients and brokers TCP connections and UDP 
communications as explained in section 4.2. 
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Relay module handles TCP connections and initial 
UDP packets to the proxy socket, which is created for 
the listening socket at GCB client when it is registered, 
and creates relay rules. TCP relay rule is defined as a 
mapping between two TCP sockets. One is connected 
to the connector, who makes connection to the proxy 
socket, and the other to the client socket. Data packets 
arrived at one socket are relayed by relay module to 
the other socket and one connection is torn down when 
the other one is closed. UDP relay rule, on the other 
hand, is defined a mapping between a UDP socket and 
an address. When a UDP packet is received from an 
address for the first time1 at UDP proxy socket, the 
relay module creates a UDP socket and connects it to 
the client socket and then adds a relay rule between the 
socket and the address the UDP packet came from. 
Packets received at the socket are sent to the address 
through the proxy socket, and those sent from the 
address and received at the proxy socket are passed to 
the corresponding client through the socket connected 
to it. To keep only valid relay rules, the server deletes 
relay rules when no packet is relayed using the rule for 
a long time. When clients resume communication after 
a long pause and hence the relay rule for them is 
deleted, the server creates a new rule. 

Unlike DPF server, GCB has no persistent file to 
recover client information after the server or machine 
failure and hence it needs not synchronize multiple 
representations of client information. Once a 
connection is brokered by the server, clients can 
establish the connection and communicate with each 
other at the server failure. Broken TCP relay channel 
due to the server failure will be reliably detected by 
both parties being relayed. Also UDP relay rules will 
be resumed when the server is brought up again and it 
creates new rules upon receiving packets at proxy 

                                                

 

1 This is not always true because of the periodic flush 
of UDP relay rules explained below 

sockets. Hence the only thing that the server has to do 
for fault tolerance is to recover client’s information at 
the level that new connections may be established to 
clients that registered themselves before server failure 
and are still valid after the server recovers from the 
failure. When the server receives a heartbeat from a 
client that is not registered, it sends reregister_request 
to the client and registers the client again upon 
receiving register_request from the client. 

5. Performance 
This section presents experimental results. We set two 
NAT-based private networks and collected data using a 
test suite. The test suite comprised of client and echo 
server and was written to use Cedar, the 
communication library of Condor, to establish 
connections and transfer data. Time was recorded at 
the client side. To minimize the effect of network 
fluctuation, we collected data for relatively short 
period of time but multiple times and averaged them. 

The data were collected for three communication 
patterns: communication from private to public, from 
public to private, and from private to different private 
network. Private to public communication means that 
the client of the test suite runs inside private network 
and the echo server runs at public network. Other 
patterns are interpreted similarly. For each pattern, we 
compared regular, DPF, and GCB, and for each of 
these TCP and UDP communication data were 
collected. 

For regular communication, we set static port 
forwarding at the head nodes so that every inbound 
connection is passed to the nodes the echo servers were 
running. For DPF testing, we placed DPF servers on 
the head nodes so that each server managed one private 
network. We used DPF clients and regular clients at 
the private and public network, respectively. For GCB, 
we placed GCB servers on the head nodes and used 
GCB clients at private networks as DPF case. 
However, at public network we tested both cases of 
client being GCB enabled and not enabled. 

Table-1, 2, and 3 show data for each 
communication pattern. The first row shows the 
average connection times with their standard deviation 
in parentheses and the second row shows the times, 
also with standard deviations, for the data being 
echoed back to the client. The connection time actually 
includes all the time from socket creation to 
connection establishment. Since DPF and GCB make 
UDP holes through NAT or firewall when the first 
packet is sent, we included the time for the first UDP 
send to be echoed to the connection time. The numbers 
are shown in microseconds. 

We must note that we just included UDP cases for 
informational purpose because it is almost impossible 
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to draw conclusion from UDP measurement due to its 
unreliable nature. 

As the tables show, DPF is very fast both in 
connection setup and data transfer. Connection setup 
time of DPF is just a little slower than that of regular 
communication. For data transfer, DPF is as fast as 
regular communication as expected. 

As expected, GCB connection is slower than DPF 
and data transfer is comparable to DPF and regular 
communication, even though we expected GCB to be a 
little slower because of the GCB layer introduced 
between application and system library and extra data 
copies between layers. From this data, we cannot draw 
a conclusion on the case that we ran regular client in 
the public side versus the case that we did GCB client 
at the public. 

<Table-1> private-to-public communication 

GCB 
Regular DPF 

Reg. Public GCB Public 

 

tcp udp tcp udp Tcp udp tcp udp 

Conn 
1656 
(258)

 

10167

 

(2032)

 

1703 
(552)

 

12086

 

(303)

 

31428

 

(2720)

 

22868

 

(5193)

 

33934

 

(9259)

 

18692

 

(2255)

 

Data 
22952

 

(3800)

 

2010 
(912)

 

24863

 

(2121)

 

693 
(260)

 

21051

 

(1045)

 

745 
(136)

 

27629

 

(7388)

 

1650 
(463)

 

<Table-2> public-to-private communication 

GCB 
Regular DPF 

Reg. Public GCB Public 

 

tcp udp tcp udp Tcp udp tcp udp 

Conn 
2007 
(620)

 

12456

 

(206)

 

2074 
(458)

 

10894

 

(351)

 

2624 
(753)

 

12038

 

(410)

 

33530

 

(2902)

 

25408

 

(5184)

 

Data 
21229

 

(933)

 

340 
(32) 

20842

 

(954)

 

1004 
(150)

 

36620

 

(4367)

 

608 
(105)

 

19455

 

(1664)

 

673 
(25) 

<Table-3> private-to-private communication 

Regular DPF GCB 

 

tcp udp tcp Udp tcp udp 

Conn 
922 
(37) 

788 
(5) 

1101 
(40) 

2204 
(161) 

6887 
(182) 

6590 
(490) 

Data 
103726 
(727) 

592 
(4) 

102905 
(720) 

653 
(1) 

108293 
(1736) 

2959 
(207) 

 

6. Analysis 
In this section, we explain how DPF and GCB satisfy 
our requirements. We also compare two approaches so 
that institutions can choose one of them depending 
their concerns and situations. We claim that both DPF 
and GCB satisfy all the requirements given in section 
1. 

DPF server is highly scalable. Since it does not 
maintain any TCP connections with its clients as 
SOCKS, the limiting factor of its scalability is the 

number of proxy addresses, i.e. ip:port pairs that can 
be leased to clients. Furthermore DPF server supports 
hosts with multiple public IP addresses, making the 
number of addresses that can be leased logically 
infinite. Hence its scalability is only limited by its 
processing and network speed. 

We expect that GCB is less scalable than DPF. 
GCB server maintains a proxy socket per GCB client 
socket and uses two TCP connections for each TCP 
relay and one UDP socket for each UDP relay. Hence 
the number of listening GCB client sockets plus that of 
UDP communications being relayed are limited by the 
maximum number of file descriptor a process can 
open, and the number of TCP communications being 
relayed are limited by the half of the maximum TCP 
connections a process can have. However, GCB server 
uses only one UDP socket for management purpose 
and is scalable enough to support most clusters. 
Furthermore a cluster can be easily partitioned by 
changing environment variables so that it may be 
brokered by multiple GCB servers.   

Both DPF and GCB satisfy the interoperability 
requirement. Regular sockets in public network can 
communicate with DPF or GCB clients inside private 
network without any change. In DPF, process in public 
network does not have any reason to be DPF enabled. 
In GCB, the process in public network needs to be 
GCB enabled for its incoming and outgoing 
connections to be brokered. However GCB server 
provides relay service for regular sockets. 

As for the last requirement, neither DPF nor GCB 
requires any change to network component such as 
router or name server. GCB server is a user level 
daemon running with a normal privilege and is 
orthogonal to network configuration. DPF server is 
also a user level daemon but requires root privilege  to 
call NAT library, and needs to be placed on the NAT 
head node of its clients. 

Even though both DPF and GCB satisfy all the 
requirements in section 1, two systems have different 
characteristics in terms of scalability, performance, 
deployability, and etc. DPF is very efficient and 
scalable as we explained above. Also its 
implementation is relatively simple. It, however, is 
tightly coupled with NAT and supports only specific 
implementations of NAT: currently NAT on Linux 2.2 
and 2.4. The fact that DPF server needs root privilege 
and should be placed on the head node, a very 
important and sensitive network element, can be a 
drawback. We believe that DPF fits very well to 
dedicated clusters, where cluster manager usually has 
the same administrative responsibility as network 
manager and high scalability and performance are 
essential because the clusters are usually big. 



GCB has almost opposite characteristics to DPF. It 
is independent to network topology and private or 
firewall technology. Hence it supports almost every 
institution that allows outbound connections, supports 
nested private network, and works with NAT’s non-
promiscuous mode that is much stricter than its default 
promiscuous mode. GCB server can also runs with the 
least privilege. It, however, is less scalable and slower 
than DPF. As a consequence, we believe that GCB fits 
perfect to non-dedicated, small, or virtual clusters, 
where cluster managers usually cannot assume any 
administrative power over network or even cluster 
machines except several that belong to her. 

7. Conclusion 
In this paper, we presented two systems to recover the 
Internet connectivity in the Condor system. While 
satisfying representative requirements of grid 
computing, DPF and GCB have different 
characteristics in terms of performance, scalability, 
deployability, and security, thus allowing institutions 
to choose the better one depending on their policies 
and concerns. 
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