
Recovering Internet Symmetry in Distributed Computing

Sechang Son, Miron Livny

Computer Science Department
University of Wisconsin

{sschang, miron}@cs.wisc.edu

Abstract

This paper describes two systems to recover Internet
connectivity impaired, especially in distributed
computing, by private networks and firewalls. Private
networks and firewalls brought Internet asymmetry
and made peer-to-peer computing difficult or even
impossible to work across private network boundaries
or over firewalls. Condor is one of those that are
severely impaired by the asymmetry. Compared to
normal peer-to-peer computing applications, Condor
has stricter requirements set, which, we believe, is
representative to any grid computing. To make Condor
seamlessly work across private networks and over
firewalls, we designed and implemented Dynamic Port
Forwarding (DPF) and Generic Connection Brokering
(GCB). Both DPF and GCB satisfy the representative
requirements. Furthermore DPF supports dedicated
large cluster very well because it is simple, efficient,
and highly scalable. On the other hand, GCB perfectly
supports non-dedicated or virtual cluster because it is
independent to private network or firewall
technologies and does not require any administrative
power to deploy it. In this paper, we describe the
implementations of DPF and GCB and analyze them
with respect to performance, deployability, scalability,
and etc.

1. Introduction
Since private networks were introduced, many
institutions have deployed them to solve IPv4 address
shortage and to improve security. Also firewalls are
usually deployed with Network Address Translator
(NAT) [RFC1631] based private networks in order to
hides internal machines and more importantly to
provide a choke point where firewall policies can be
applied.

Though private network was conceived as a
temporary solution to the address shortage problem
and the IPv6 project is a massive effort to solve the
problem in a permanent way, many experts predict that
it will persist even after the full deployment of IPv6 for
its easy network manageability and economic reasons
[FRNGUM]. We believe that grid computing gives one
of the most convincing examples that support this
argument. Grid is the infrastructure that enables
coordinated resource sharing and problem solving in

dynamic, multi-institutional virtual organizations
[FSTKSS]. In grid computing, pools of hundreds or
thousands machines are not rare. All or some of those
machines are dedicated to grid computing and have
much less reason to have world addressable IP
addresses than those owned by individuals and used
for general applications and daily use. Administrators
of those pools would prefer private network
configuration because they can easily manage their
clusters and also reduce the cost by paying for only
several public IP addresses for head nodes instead of
hundreds or thousands ones.

Private network and firewall, however, damaged
Internet connectivity and made it asymmetric. Internet
was originally designed as being symmetric at least
above the transport layer, i.e. if a process A can talk to
B, then B is always able to talk to A. This symmetry,
however, is no more guaranteed if A is inside a private
network or behind a firewall, because NAT or firewall
usually blocks all or some of inbound communications.
Among others, Peer-to-Peer (P2P) computing may be
the most damaged one by the asymmetry because, in
P2P, any process needs be able to talk to any other.
Condor system [LIVNY] [LTZLVN], in which
virtually every machine must be able to communicate
with each other, is a P2P application by nature and
damaged by the asymmetry.

As a grid system, Condor has the following
requirements for any solution to recover Internet
connectivity, in addition to those required by regular
P2P systems. We believe that all of the requirements
listed below are common to any grid approach and, at
our best knowledge, no single system so far satisfies
all of them.

1. The solution must be highly scalable. Condor
clusters with hundreds of nodes are very
common and ones with thousands exist.
Furthermore, flocking [EPMLEP] makes
clusters even bigger by putting existing ones
together. Hence we can’t use an approach that
assumes small number of machines inside
private network or behind firewall.

2. It must provide a way to communicate with
(existing) regular sockets. Many different
versions of Condor clusters have already been
installed and are running all over the world, and
they need be able to communicate with new

clusters with private network and firewall
support. Hence the solution must provide a way
to communicate with existing sockets without
any change to them.

3. Changes to network components must be
minimized and any change to kernel or having
system-wide impact is not allowed. Condor does
not require any kernel change or even root
privilege to run it, and this was turned out to be
one of the most important features of Condor’s
success. We want to keep this advantage and
would not take any approach that hurts easy
deployment of Condor.

To bring symmetry back to Condor, we
implemented two different approaches, DPF (Dynamic
Port Forwarding) and GCB (Generic Connection
Brokering), which have different characteristics in
terms of clusters supported, security, performance, and
etc. so that institutions may choose the better one
depending on their policies and situations.

Firewall and NAT based private network are
essentially the same from the perspective of impacts on
grid computing. Also connectivity loss due to private
network is considered more severe because
connections blocked are side effects of private network.
Hence the following discussions are made in the
context of NAT based private network. In section 2,
we briefly explain previous works. DPF and GCB are
explained in section 3 and 4, respectively. Some
experimental results are presented in section 5.

2. Previous Works
Many researches and developments have been done or
being carried out to recover Internet connectivity.
Some systems took local or fill-the-gap approaches,
requiring changes to components within an
institution’s administration domain. Other systems
took global approaches and require major changes to
Internet or need agreement between various
institutions. For example, TRIAD [CHRGRT,
GRTCHR] and IP Next Layer (IPNL) [FRNGUM] use
name-based and realm-to-realm routing to make
inbound communications possible and propose
changes to Internet protocol stack. Address
Virtualization Enabling Service (AVES) [EUGSTO]
uses proxy and packet rewriting technique and requires
changes to DNS servers and NAT machines. Because
global approaches will take years to be accepted by
large community and because they fail to satisfy the
last requirement in section 1, we will only consider
local approaches in this section.

2.0 Global approaches (Informational and optional)
TRIAD [CHRGRT, GRTCHR] proposes to hide IP
address from applications and use URL as the sole

network end-to-end identity. It uses URL based routing
to setup connections and semi source routing to deliver
packets of the connection. In TRIAD, connection is
established by cooperating name servers as part of
name lookup operation and address path, a realm-to-
realm source route, is returned as the result of the
connection. Packets of the connection are relayed
according to the address path, which is a part of packet
header. To support NAT, NAT machines must act as
the TRIAD name server and relay point. In addition to
the changes of NAT machines, client machines must
be changed too because TRIAD proposes the change to
Internet protocol stack.

IP Next Layer (IPNL) [FRNGUM] views Internet
as a hierarchical connection of realms, where each
private network becomes a realm, possibly containing
sub-realms, and public network is a middle realms
connecting private realms at the highest hierarchy, and
proposes to add IPNL layer, between (inter)
networking and transport layer, that performs inter-
realm routing and name-based routing. In IPNL,
network endpoint is uniquely defined both by FQDN
and IPNL address, which basically explains where the
endpoint is located in the hierarchy. Like TRIAD,
IPNL uses name based routing for connection and uses
more efficient IPNL address to transfer packets once
the connection is established. Basic idea to support
private networks is to make NAT machines as IPNL
router, which performs name-based routing and relays
packets between realms that can’t normally
communicate with each other directly.

Unlike TRIAD and IPNL, Address Virtualization
Enabling Service (AVES) [EUGSTO] does not require
changes on Internet protocol stack, but still requires
changes of major network components such as DNS
server and NAT. In AVES, public IP address of the
waypoint is leased to the private machine at the time of
DNS query by the connector, through the cooperation
of DNS server and the waypoint chosen by the server.
DNS server answers the leased IP address to the
connector. Inbound connection is made by waypoint’s
rewriting and then relaying of the packet, which is sent
from the connector to the waypoint. NAT machine for
the private machine is also need to change so that it
may understand AVES protocol and pass packets from
the waypoint to the real destination.

2.1 Application-specific connection brokering
Napster [NAPSTR] server acts as a connection broker
for its clients. Normally it arranges that a downloading
site make a connection to an uploading site. However,
when the uploader is inside private network, it asks the
uploader to push files to the downloader in public
network. Gnutella [GNUTLL] also uses the same idea,
but without any server. When an uploader is inside

private network, the downloader in public network
asks the uploader to actively push a file. This approach
is very simple and has little overhead. This can also be
used with any private network technique and requires
no change to network components. However, it has a
few disadvantages, which make this approach fail to
satisfy those requirements in section 1, including:

It is an application specific approach. Any
application that wants to apply this idea needs to
implement its own version of connection
brokering.
It is not interoperable with regular sockets. Since
every node, including clients and server, needs to
follow an application-specific protocol of
brokering, no regular socket that is ignorant of the
protocol could be brokered.
Without additional help such as relay or
rendezvous service, private-to-private connection
is impossible.

2.2 SOCKS
IETF took SOCKS [RFC1928] as a standard for
performing network proxies at the transport layer.
Basic idea is that the SOCKS server, which must be
placed at the outskirts of a private network, plays as a
relay point at transport layer between machines inside
private network and those at public network. When a
node A at public network wants to connect to B behind
a SOCKS server, A sends connection request to the
SOCKS server. Then the server establishes two
transport connections: one with A and the other with
B, and then relays packets between them. The
initiation of UDP communication is handled in a
similar manner.

SOCKS has several advantages. First of all, it can
be viewed as an application independent approach
because applications need not be rewritten to use
SOCKS. SOCKS people call applications that become
aware of SOCKS protocol socksified. Application can
be socksified either by changing its codes, by relinking
with SOCKS library, or by modifying system’s
dynamic library path so that SOCKS library is used
instead of regular network library. Another advantage
is that it is a mature system, because it has been used in
many applications and institutes. Currently commercial
products are available as well as research systems.
Finally it is private network technology independent
and can be used with or even without any NAT-like
proxy. When it is used without a NAT-like proxy,
private-to-public connections as well as public-to-
private ones are relayed by the server.

It, however, has a few drawbacks, which makes it
fail to satisfy our requirements:

It is not highly scalable. Every socket whose
packets are relayed by a SOCKS server needs to

maintain a management TCP connection with the
server during its lifetime. In every operating
system the number of TCP connections opened at
the same time is limited and thus the maximum
number of sockets supported by a SOCKS server
is limited by this number.
Regular socket on the public side cannot initiate
communication to SOCKS client at the private
side. With SOCKS, clients inside private network
need not be changed at all. Nodes at public side,
however, must be aware of SOCKS protocol and
this violates our important requirement.

We believe that the last constraint of SOCKS
shows that it was originally invented for client-server
model as hinted in [RFC1928] rather than P2P
computing, because, in P2P, clients at public side are
usually indefinite and it is usually impossible to make
changes to every public peer application or node.

2.3 Realm Specific IP (RSIP)
Realm Specific IP (RSIP) [RFC3102, RFC3103,
BRLMNT] has been proposed and adopted by IETF as
a standard way to solve NAT problems, especially
those related to IPSec [RFC2401] and inbound
connection.

The client inside private network leases one or
more public IP addresses and ports from RSIP server
when the system boots up or dynamically when it
needs them, and uses those leased address as network
endpoint identities. The RSIP server maintains
mapping between leased addresses and leaser address
to handle inbound communications to the leaser. When
the leaser needs to send a packet to a public peer, it
prepares the packet as if it is from one of those leased
addresses and then sends it through the tunnel to RSIP
server. Upon receiving a packet through the tunnel, the
server stripes off the tunnel header and forwards it to
public network. Inbound communications, including
replies from the public peer, are handled in the reverse
way. The server wraps the received packet using the
leaser’s address from the mapping and sends it to the
leaser. Then the leaser unwraps the tunnel header and
passes the resulting packet to the application.

In addition to the support for inbound
communications, RSIP solves NAT’s incompatibility
with IPSec [RFC3104]. Since RSIP server relays
packets untouched, other than ripping off extra header
for tunneling, end-to-end security at IP level required
by IPSec can be easily achieved.

RSIP also supports nested private networks by
cascading RSIP servers. [RFC3102] also recommends
that RSIP server be compatible with NAT clients so
that it may support private networks with the
combination of RSIP enabled sockets and regular ones.

RSIP has many desirable characteristics as
explained above. It is, however, still an ongoing effort
and more importantly it was proposed as a substitute of
NAT. Though RSIP can be implemented as an
extension to NAT for some NAT implementations
such as iptables in Linux 2.4, generally RSIP should
replace well-tested NAT. We don’t believe that, in a
near future, it will be developed for every major
platform and becomes prevalent so network
administrators are willing to use RSIP instead of NAT.

3. Dynamic Port Forwarding (DPF)
For easy explanation, we introduce two notations
below and use them throughout the paper. A:B
represents a pair of IP address A and port number B.
[A:B > C:D] represents a mapping or translation rule
from A:B to C:D.

NAT port forwarding is a combination of packet
rewriting and routing mechanism based on ports as
well as IP addresses, and is the most popular way, if
not the best nor the sole way, to make inbound
communication possible in NAT. When an NAT
gateway receives a packet destined to Nip:Nport and
has a forwarding rule [Nip:Nport > ipX:portY], it
rewrites the destination as ipX:portY and routes the
rewritten packet toward IP address ipX. Hence
machines inside private network can accept inbound
communications by setting port forwarding rule at
NAT gateway.

At our best knowledge, port forwarding must be set
/unset by administrator in a static way and can be used
when user knows both (the range of) port numbers the
application running in private node uses and how long
it uses them. On the contrary, DPF uses NAT port
forwarding in dynamic way and does not require user’s
such knowledge.

3.1 Architecture
Fig-1 shows a Condor pool managed by a central
manager and composed of machines inside private
network as well as those in public network. You can
also think the node in public network as a condor node
that flocked to this pool. Condor nodes inside private
network are DPF enabled, while those in public
network need not be. We will call DPF-enabled
Condor nodes DPF clients. Central manager can be
placed anywhere in the administration domain: inside
private, in public, or on the boundary of private
network. DPF server is a process, running with root
privilege on the NAT gateway.

DPF server manages a private network or part of it
and acts as a proxy for clients within it. A private
network can be partitioned and managed by multiple
DPF servers, however a server can manage at most one
network.

When a DPF client binds a sockets to a local
ip:port, it sends to the DPF server forwarding requests
with its local ip:port and optional desired public
ip:port. DPF server sets port forwarding rule by calling
NAT’s API and replies failure with an appropriate
error code, if it can’t set the rule as requested. If
succeed, it registers the client and replies success with
public ip:port through which nodes in public network
can connect to the client.

The client uses the public ip:port instead of the
local ip:port as its endpoint identity at the application
layer. That is, the client uses the ip:port whenever it
needs to notify its communication endpoint to its peer
or to information server such as the central manager.
However, unlike RSIP, the client can still use regular
socket calls to send packets because NAT will
automatically modify packets when they traverse
through it.

Now Condor nodes in public network can connect
to DPF clients by sending packets to the public ip:port,
which they can obtain from the central manager or
through another connection to the clients that was
established before.

For efficient communication within a private
network, client inside private network sends to the
server the query with peer’s ip:port. Server answers the
query with the local ip:port of the peer if the peer is
registered to the server, i.e. the peer is in the same
private network, otherwise it answers NAK. If the
server answers success, the client connects to the peer
using the local ip:port instead of that known to public.

3.2 Implementation (Optional)

3.2.1 DPF client
Each socket of DPF client is coupled to a management
socket, a passive TCP socket, and shares its lifetime
with the management socket. That is, it is created,

DPF Server

Command
Result

Command &
Result

NAT

Port Forwarded
Connection

Private network

Direct
Connection

Central
Manager Advertise

Proxy
ip:port

Get Proxy
ip:port Condor

Node

Condor
Node

Condor
Node

DPF Server

Command
Result

Command &
Result

NAT

Port Forwarded
Connection

Private network

Direct
Connection

Central
Manager Advertise

Proxy
ip:port

Get Proxy
ip:port Condor

Node
Condor

Node

Condor
Node

Condor
Node

Condor
Node

Condor
Node

[Fig-1] Architecture of DPF

duplicated, inherited, and closed together with its peer:
the management socket. Because it is guaranteed that
the client socket is in use as long as the peer is open,
DPF server is able to know that the socket is no longer
in use when it cannot connect to its peer. This
approach is a little inefficient than SOCKS, where each
client socket has its management socket connected to
SOCKS server during its lifetime, because DPF server
must go through TCP connection setup process each
time it wants to know whether a client socket is still in
use. However, the server becomes much more scalable
because it need not have as many auxiliary sockets
open as client sockets in use. Also notice that DPF
clients need not pay attention to the management
sockets, because the kernel will accept connections to
it as long as it open.

Passive DPF client sockets, i.e. UDP and listening
TCP sockets, have port forwarding rules at the server
and are publicly represented by public ip:port returned
by the server. To make sure that the correct ip:port be
advertised to the client’s peer or central manager, DPF
client asks the server to set a port forwarding rule right
after it binds a socket to local ip:port. To maintain only
necessary rules at the server, however, the client asks
the server to delete the rule for the socket when the
application makes it active, for example application
calls ‘connect’ in Unix.

3.2.2 DPF server
DPF server is implemented as a daemon process
running with root privilege on a machine with Linux
2.2 or higher and NAT enabled. Also the server must
be placed where it can directly communicate with
clients.

To handle client’s request efficiently, the server
maintains the mapping table, which contains port
forwarding rules and client information that owns the
rule. It also has the mirror file of the mapping table to
make DPF run gracefully in the face of server failure
and/or NAT machine reboot. As a result, we have three
representations of port forwarding on server machine:
the mapping table, the mirror file, and the kernel table
of forwarding rule. The mapping table and the mirror
file contain the same information almost all the time,
which the kernel table has less information on each
rule but may have more rules because rules may be set
by methods other than DPF such as manually set for
ssh server by administrator. DPF server is deliberately
implemented so that the consistency between those
three representations is maintained and the appropriate
representation is used each time as explained below.

Queries from clients are answered based on the
mapping table.

The addition of a rule is recoded in the order or the
mapping table, the mirror file, and the kernel table.

This order was carefully chosen to make system fault-
tolerant and efficient. Because our design allows reuse
of forwarding rules, the server stops modifying
representation as soon as possible. If the same rule in
the mapping table as the one being added is found, it
reuses the rule and modifies nothing. On the other
hand, if a rule with the same public ip:port as the new
one but different client information is found, the server
reuses the rule with modification only to the mapping
table and the mirror file. If no match is found, it will
add a new rule and modify all representations.

The deletion of rules is applied in the order of the
mapping table, the kernel table, and the mirror file.
Unlike the case of the addition, all the representations
are modified.

The server replies to clients after modifying all the
necessary representations to maintain the consistency
with them. The addition and deletion orders above also
guarantee the consistency among three representations
in the server as well, because the mapping table and
the kernel table are synchronized to the mirror file as
explained below. Note that garbage rules may remain
in the server if the server fails or system crashes after
the mirror file is updated but answer is sent to the
client. This causes no problem because the server
periodically probes client sockets by making TCP
connections to their peers and deletes those not in use
by clients.

3.2.2.1 synchronization
The DPF server synchronizes three representations

right after the periodic probe of client sockets. The
synchronization is performed based on the contents of
the mirror file.

For performance reason, new rules are always
appended to the mirror file. As a result of this, rules
overwritten by new rules due to the reuse of rules
explained above may still remain in the mirror file.
Hence the first step of synchronization is to delete all
deprecated rules from the file. After that, the mapping
table and the kernel table are synchronized to the
mirror file. Note that the rules that are in the kernel
table but not in the mirror file should not be deleted
since they might be added by other methods.

4. Generic Connection Brokering (GCB)
Generic Connection Brokering (GCB) uses the idea
similar to that of Napster, that is, the connection broker
arranges which party should initiate a communication
based on network situation of each party. To solve the
interoperability problem of application-specific
connection brokering system such as Napster and
Gnutellar, GCB uses the idea of layer injection. By
introducing GCB layer between application and
system-call library, GCB makes connection

establishment at the application layer orthogonal to
real connection setup at the kernel level. In other
words, application program can call connect or accept,
depending on the semantics of the application layer,
without worrying about whether it can reach to or can
be reached from its peer. GCB layer determines
whether it should make a connection to or accept
connection from the peer.

4.1 Architecture
Fig-2 shows a typical Condor pool using GCB. The
pool has three Condor nodes, two inside private
network and one in public, and is managed by a central
manager node on the top. Fig-2 also shows a node on
lower left that flocks from another pool. All nodes
except the flocking node are GCB enabled and
brokered by the GCB server. You may view the
flocking node as another type of public node of the
pool that is not aware of GCB protocol. We will call
those nodes, which know GCB protocol and are
managed by the GCB server, GCB clients.

GCB server generally manages clients within an
administrative domain and arranges connections to
those clients either from a process within the domain
or outside the domain by arbitrating who should
actively connect. Unlike DPF server, GCB server is a
normal user process and can be placed either in public
network or on the boundary between private and public
network.

For easy explanation, let us call the processes
willing to accept connections listeners and those trying
to connect to one of listeners connectors.

GCB enabled listener registers the passive socket at
its GCB server by sending a register request to the
server. Upon receiving the register request, the server
creates a proxy socket of the same type as the client
socket, binds it, make it passive, and returns the
address the proxy socket is bound to. From now on, the
listener uses the proxy address as its network identity.

In other words, whenever it needs to inform other
processes of its address, it sends the proxy address
instead of its real address.

When another GCB client, a connector, wants to
connect to the listener, it asks the listener’s GCB
server to broker the connection by sending connect
request. The listener’s GCB server can be contacted
using the same IP address as the listener’s proxy IP
and the predefined port. The server decides, based on
network situation of the connector and the listener,
who should actively connect and arranges accordingly.
If either cannot connect to the other because, for
example, both are inside private networks, it lets both
parties connect to the server and relays packets
between them.

Since normal connectors do not know GCB
protocol and think the proxy address of the listener as
the real address, they will directly connect to the proxy
socket that the server created when the listener
registered its socket. Upon accepting a direct
connection to the proxy socket, the server will ask the
corresponding client to connect to the server and then
will relay the packets between two connections.

Connection between GCB enabled connector and
normal listener is established in a little ugly way. Since
the connector thinks the listener’s address as proxy
one, it will try but fail to contact the listener’s GCB
server. When there is no process using the supposed-
to-be GCB server’s address, it will take one round trip
time (RTT) for the connector to detect that the listener
is not a GCB client. However, if any process happens
to use the address, the connector needs a little more
time to detect that the server does not understand
Reliable UDP (RUDP) protocol that we implemented
for exchanging GCB commands.

We understand drawbacks of our approach. First,
network addresses are wasted because the real address
of the listener in public network is unnecessarily
hidden by proxy address. Second, connections to
listeners in public network need not be brokered.
Lastly, connections to normal listeners are slow due to
the unnecessary RTT waste. If we used the
combination of the real address and the proxy address
as the network identity of GCB client, we would not
have had these problems. However, we took this
inefficient approach because this scheme allows us to
use legacy socket address and gives us a great chance
to extend GCB to be used any application.
Furthermore, the uniform indirection gives sockets
mobility. Suppose a process moving around machines.
This type of process is very common in grid
computing. Since the process can use the same address
regardless of its location and connections to it will be
appropriately brokered based on its current location,
other processes can always make connections to it.

Condor
Node

Private network

Direct
Connection

Flocking
Condor

Node

Central
Manager Advertise

Proxy
ip:port

Get Proxy
ip:port

GCB
Server

Command, Result
& Async Cmd

Command, Result
& Async Cmd

Condor
Node

Condor
Node

Condor
Node

Condor
Node

Private network

Direct
Connection

Flocking
Condor

Node

Flocking
Condor

Node

Central
Manager
Central

Manager Advertise
Proxy
ip:port

Get Proxy
ip:port

GCB
Server
GCB

Server

Command, Result
& Async Cmd

Command, Result
& Async Cmd

Condor
Node

Condor
Node

Condor
Node

Condor
Node

[Fig-2] GCB architecture

4.2 Implementation (Optional)

4.2.1Client Implementation
As shown in Fig-3, a GCB client has a pool of records
of listening sockets and a list of blocked passive
connections. Each listening socket is tightly coupled
with a management socket and has the exactly same
fate as its management socket, that is, they are created,
duplicated, inherited, and closed together. The
management socket, a UDP socket that uses reliable
protocol we developed, is used for GCB command
exchange with GCB server. It is also used to
periodically send heartbeats to the server so that the
server may be able to send asynchronous commands to
the client and may also know that the listening socket
is open and in use. Note that GCB server may be
placed where it cannot directly talk to clients and, in
this case, it can only send asynchronous commands to
clients through UDP holes clients have made by
initiating communication.

The record also has a connection queue, UDP
message buffer, and UDP receiver list. The connection
queue is only valid for TCP sockets while UDP
message buffer and receiver list for UDP sockets.
Notice that there are passive and active connections in
GCB. Passive connections are maintained by the
kernel and taken from kernel’s queue by socket call
accept in Unix while active ones, which are established
in the reverse way by listener connecting to the
connector, must be established and maintained by
GCB module. Regardless of their types, connections
should be returned to the application in the order that
they were established. GCB client stores both active
and passive connections in the connection queue in the
order that they are established, and returns the one
from the head of the queue to the application.

Since DUMMY messages can be received at a
UDP socket anytime, GCB client must examine UDP
packets received and acknowledge DUMMY packets
or stash data packet somewhere to pass them to the
application when requested. This is what UDP buffer is
for.

UDP receiver list is a collection of records of peers
who have recently communicated with the owner of it.
Among other things, the record contains mappings
between peer’s public and local address. When the
application wants to send UDP data to a receiver, GCB
client searches UDP receiver list to find the record of
the recipient. If it finds the record, it sends the packet
to the local address of the record. If it can’t find, it
performs GCB connection setup procedure explained

in section 4.2, adds a new record for the recipient to
the receiver list, and then sends data through the
channel established. Because GCB client does not
know when a peer’s record becomes invalid, it deletes
the record when it encounters a network error with
sending or receiving using the record. It also
periodically flushes the list, for the same reason, and
adds new records later when it needs to send
something to deleted peers.

In GCB, commands from the server, DUMMY,
DUMMY_ACK, new connection, normal UDP data
packets, etc. can arrive anytime. This fact requires
GCB client to be always prepared to handle any of
those asynchronous events and makes its
implementation very complex. Asynchronous Event
Handler (AEH) is the routine that handles those events
and is called once or more by every GCB client
routines.

As explained earlier, GCB client is implemented in
a generic way so that any application can use it to
communicate across private network boundary. To
achieve this goal, we overloaded socket calls so that
they follow GCB protocol. We also changed blocking
socket calls such as connect, select, recv, etc. so that
they periodically call AEH and also send periodic
heartbeats to the server.

4.2.2 Server Implementation
GCB server is composed of client socket records, each
of which is created per client’s listening sockets, and
two functional modules: broker and relay module.
Broker module handles all GCB commands from
clients and brokers TCP connections and UDP
communications as explained in section 4.2.

GCB Client

Blocked connections

TCP_conn_q

UDP buffer UDP receivers
Async
Event

Handler

socket
calls

mng. socket

Cmd to & Result from GCB server

Async cmd from GCB server

GCB sockets

data socket

GCB Client

Blocked connections

TCP_conn_q

UDP buffer UDP receivers
Async
Event

Handler

Async
Event

Handler

socket
calls

socket
calls

mng. socketmng. socket

Cmd to & Result from GCB server

Async cmd from GCB server

GCB sockets

data socketdata socket

[Fig-3] GCB client architecture

Relay module handles TCP connections and initial
UDP packets to the proxy socket, which is created for
the listening socket at GCB client when it is registered,
and creates relay rules. TCP relay rule is defined as a
mapping between two TCP sockets. One is connected
to the connector, who makes connection to the proxy
socket, and the other to the client socket. Data packets
arrived at one socket are relayed by relay module to
the other socket and one connection is torn down when
the other one is closed. UDP relay rule, on the other
hand, is defined a mapping between a UDP socket and
an address. When a UDP packet is received from an
address for the first time1 at UDP proxy socket, the
relay module creates a UDP socket and connects it to
the client socket and then adds a relay rule between the
socket and the address the UDP packet came from.
Packets received at the socket are sent to the address
through the proxy socket, and those sent from the
address and received at the proxy socket are passed to
the corresponding client through the socket connected
to it. To keep only valid relay rules, the server deletes
relay rules when no packet is relayed using the rule for
a long time. When clients resume communication after
a long pause and hence the relay rule for them is
deleted, the server creates a new rule.

Unlike DPF server, GCB has no persistent file to
recover client information after the server or machine
failure and hence it needs not synchronize multiple
representations of client information. Once a
connection is brokered by the server, clients can
establish the connection and communicate with each
other at the server failure. Broken TCP relay channel
due to the server failure will be reliably detected by
both parties being relayed. Also UDP relay rules will
be resumed when the server is brought up again and it
creates new rules upon receiving packets at proxy

1 This is not always true because of the periodic flush
of UDP relay rules explained below

sockets. Hence the only thing that the server has to do
for fault tolerance is to recover client’s information at
the level that new connections may be established to
clients that registered themselves before server failure
and are still valid after the server recovers from the
failure. When the server receives a heartbeat from a
client that is not registered, it sends reregister_request
to the client and registers the client again upon
receiving register_request from the client.

5. Performance
This section presents experimental results. We set two
NAT-based private networks and collected data using a
test suite. The test suite comprised of client and echo
server and was written to use Cedar, the
communication library of Condor, to establish
connections and transfer data. Time was recorded at
the client side. To minimize the effect of network
fluctuation, we collected data for relatively short
period of time but multiple times and averaged them.

The data were collected for three communication
patterns: communication from private to public, from
public to private, and from private to different private
network. Private to public communication means that
the client of the test suite runs inside private network
and the echo server runs at public network. Other
patterns are interpreted similarly. For each pattern, we
compared regular, DPF, and GCB, and for each of
these TCP and UDP communication data were
collected.

For regular communication, we set static port
forwarding at the head nodes so that every inbound
connection is passed to the nodes the echo servers were
running. For DPF testing, we placed DPF servers on
the head nodes so that each server managed one private
network. We used DPF clients and regular clients at
the private and public network, respectively. For GCB,
we placed GCB servers on the head nodes and used
GCB clients at private networks as DPF case.
However, at public network we tested both cases of
client being GCB enabled and not enabled.

Table-1, 2, and 3 show data for each
communication pattern. The first row shows the
average connection times with their standard deviation
in parentheses and the second row shows the times,
also with standard deviations, for the data being
echoed back to the client. The connection time actually
includes all the time from socket creation to
connection establishment. Since DPF and GCB make
UDP holes through NAT or firewall when the first
packet is sent, we included the time for the first UDP
send to be echoed to the connection time. The numbers
are shown in microseconds.

We must note that we just included UDP cases for
informational purpose because it is almost impossible

GCB Server

Broker
Module

client socket

Client Info’s

Public address Local address

Relay Info

insock outsock
…

from outsock
…

TCP UDP

Data to & from GCB clientsData to & from world

GCB cmd
& answer

Relay
Module

Connection from world

GCB Server

Broker
Module
Broker
Module

client socketclient socket

Client Info’s

Public address Local address

Relay Info

insock outsock
…

from outsock
…

TCP UDP

Relay Info

insock outsock
…

from outsock
…

TCP UDP

Data to & from GCB clientsData to & from world

GCB cmd
& answer

Relay
Module
Relay

Module

Connection from world

 [Fig-4] GCB server architecture

to draw conclusion from UDP measurement due to its
unreliable nature.

As the tables show, DPF is very fast both in
connection setup and data transfer. Connection setup
time of DPF is just a little slower than that of regular
communication. For data transfer, DPF is as fast as
regular communication as expected.

As expected, GCB connection is slower than DPF
and data transfer is comparable to DPF and regular
communication, even though we expected GCB to be a
little slower because of the GCB layer introduced
between application and system library and extra data
copies between layers. From this data, we cannot draw
a conclusion on the case that we ran regular client in
the public side versus the case that we did GCB client
at the public.

<Table-1> private-to-public communication

GCB
Regular DPF

Reg. Public GCB Public

tcp udp tcp udp Tcp udp tcp udp

Conn
1656
(258)

10167

(2032)

1703
(552)

12086

(303)

31428

(2720)

22868

(5193)

33934

(9259)

18692

(2255)

Data
22952

(3800)

2010
(912)

24863

(2121)

693
(260)

21051

(1045)

745
(136)

27629

(7388)

1650
(463)

<Table-2> public-to-private communication

GCB
Regular DPF

Reg. Public GCB Public

tcp udp tcp udp Tcp udp tcp udp

Conn
2007
(620)

12456

(206)

2074
(458)

10894

(351)

2624
(753)

12038

(410)

33530

(2902)

25408

(5184)

Data
21229

(933)

340
(32)

20842

(954)

1004
(150)

36620

(4367)

608
(105)

19455

(1664)

673
(25)

<Table-3> private-to-private communication

Regular DPF GCB

tcp udp tcp Udp tcp udp

Conn
922
(37)

788
(5)

1101
(40)

2204
(161)

6887
(182)

6590
(490)

Data
103726
(727)

592
(4)

102905
(720)

653
(1)

108293
(1736)

2959
(207)

6. Analysis
In this section, we explain how DPF and GCB satisfy
our requirements. We also compare two approaches so
that institutions can choose one of them depending
their concerns and situations. We claim that both DPF
and GCB satisfy all the requirements given in section
1.

DPF server is highly scalable. Since it does not
maintain any TCP connections with its clients as
SOCKS, the limiting factor of its scalability is the

number of proxy addresses, i.e. ip:port pairs that can
be leased to clients. Furthermore DPF server supports
hosts with multiple public IP addresses, making the
number of addresses that can be leased logically
infinite. Hence its scalability is only limited by its
processing and network speed.

We expect that GCB is less scalable than DPF.
GCB server maintains a proxy socket per GCB client
socket and uses two TCP connections for each TCP
relay and one UDP socket for each UDP relay. Hence
the number of listening GCB client sockets plus that of
UDP communications being relayed are limited by the
maximum number of file descriptor a process can
open, and the number of TCP communications being
relayed are limited by the half of the maximum TCP
connections a process can have. However, GCB server
uses only one UDP socket for management purpose
and is scalable enough to support most clusters.
Furthermore a cluster can be easily partitioned by
changing environment variables so that it may be
brokered by multiple GCB servers.

Both DPF and GCB satisfy the interoperability
requirement. Regular sockets in public network can
communicate with DPF or GCB clients inside private
network without any change. In DPF, process in public
network does not have any reason to be DPF enabled.
In GCB, the process in public network needs to be
GCB enabled for its incoming and outgoing
connections to be brokered. However GCB server
provides relay service for regular sockets.

As for the last requirement, neither DPF nor GCB
requires any change to network component such as
router or name server. GCB server is a user level
daemon running with a normal privilege and is
orthogonal to network configuration. DPF server is
also a user level daemon but requires root privilege to
call NAT library, and needs to be placed on the NAT
head node of its clients.

Even though both DPF and GCB satisfy all the
requirements in section 1, two systems have different
characteristics in terms of scalability, performance,
deployability, and etc. DPF is very efficient and
scalable as we explained above. Also its
implementation is relatively simple. It, however, is
tightly coupled with NAT and supports only specific
implementations of NAT: currently NAT on Linux 2.2
and 2.4. The fact that DPF server needs root privilege
and should be placed on the head node, a very
important and sensitive network element, can be a
drawback. We believe that DPF fits very well to
dedicated clusters, where cluster manager usually has
the same administrative responsibility as network
manager and high scalability and performance are
essential because the clusters are usually big.

GCB has almost opposite characteristics to DPF. It
is independent to network topology and private or
firewall technology. Hence it supports almost every
institution that allows outbound connections, supports
nested private network, and works with NAT’s non-
promiscuous mode that is much stricter than its default
promiscuous mode. GCB server can also runs with the
least privilege. It, however, is less scalable and slower
than DPF. As a consequence, we believe that GCB fits
perfect to non-dedicated, small, or virtual clusters,
where cluster managers usually cannot assume any
administrative power over network or even cluster
machines except several that belong to her.

7. Conclusion
In this paper, we presented two systems to recover the
Internet connectivity in the Condor system. While
satisfying representative requirements of grid
computing, DPF and GCB have different
characteristics in terms of performance, scalability,
deployability, and security, thus allowing institutions
to choose the better one depending on their policies
and concerns.

References
[BRLMNT] M. S. Borella, G. E. Montenegro, “RSIP:

Address Sharing with End-to-End
Security”, Special Workshop on
Intelligence at the Network Edge, San
Francisco, 2000.

[CHRGRT] D. R. Cheriton, M. Gritter, “TRIAD: A
New Next Generation Internet
Architecture”, March 2000. http://www-
dsg.stanford.edu/triad/triad.ps.gz.

[EPMLEP] D. H. J Epema, Miron Livny, R. van
Dantzig, X. Evers, and Jim Pruyne, "A
Worldwide Flock of Condors: Load
Sharing among Workstation Clusters"
Journal on Future Generations of
Computer Systems, Volume 12, 1996

[EUGSTO] T. S. Eugene Ng, Ion Stoica, Hui Zhang,
A Waypoint Service Approach to
Connect Heterogeneous Internet Address
Spaces, http://www-
2.cs.cmu.edu/~eugeneng/papers/aves-
paper.pdf.

[FRNGUM] P. Francis, R. Gummadi, “IPNL: A NAT-
Extended Internet Architecture”,
SIGCOMM’01 Aug. 27, 2001.

[FSTKSS] I. Foster, C Kesselman, S. Tuecke, “The
Anatomy of the Grid: Enabling scalable
virtual organizations”, Intl. Journal of
Supercomputing Applications 2001.

[GNUTLL] “The Gnutella Protocol Specification
v0.4 Document Revision 1.2”,
http://www9.limewire.com/developer/gn
utella_protocol_0.4.pdf.

[GRTCHR] M. Gritter, D. R. Cheriton, “An
Architecture for Content Routing Support
in the Internet”, Usenix Symposium on
Internet Technologies and Systems,
March 2001.

[LIVNY] Livny, M., “High-Throughput Resource
Management”, Foster, I. and Kesselman,
C. eds., The Grid: Blueprint for a New
Computing Infrastructure, Morgan
Kaufmann, 1999, pp. 311-337.

[LTZLVN] Litzkow, M., Livny, M., and Mutka, M.,
“Condor - A Hunter of Idle
Workstations”, Proc. 8th Intl Conf. on
Distributed Computing Systems, 1988,
pp. 104-111.

[NAPSTR] “Napster Protocol Specification”,
http://opennap.sourceforge.net/napster.txt
[P2PDOC] P2P WG, “Bidirectional
Peer-to-Peer Communication with
Interposing Firewalls and NATs”,
http://www.p2pwg.org/tech/nat/Docs/NA
TWhitePaperv09.5.pdf.

[RFC1631] K. Egevang, P. Francis, The IP Network
Address Translator (NAT)”, RFC1631
May 1994.

[RFC1928] M. Leech, M.Ganis, Y. Lee, R. Kuris, d.
Koblas, L. Jones, “SOCKS Protocol
Version 5”, IETF RFC 1928 March 1996

[RFC2401] S. Kent, P. Atkinson, “Security
Architecture for the Internet Protocol”,
IETF RFC 2401, Nov. 1998.

[RFC3102] M. Borella, J. Lo, D. Grabelsky, G.
Montenegro, “Realm Specific IP:
Framework”, IETF RFC 3102, July 2000.

[RFC3103] M. Borella, D. Grabelsky, J. Lo, K.
Taniguchi, “Realm Specific IP: Protocol
Specification”, IETF RFC 3103, Oct.
2001.

[RFC3104] G. Montenegro, M. Borella, “RSIP
Support for End-to-End IPSEC”, IETF
RFC 3104, Oct. 2001.

[UPNPMS] “Understanding Universal Plug and
Play”, Microsoft Corporation, White
Paper, 2000.

[UPNPURL] Universal Plug and Play Forum web site,
http://www.UpnP.org.

http://opennap.sourceforge.net/napster.txt
http://www.p2pwg.org/tech/nat/Docs/NA
http://www.UpnP.org

