
HDFS Proxy Guide

Table of contents

1 Introduction ...3

2 Goals and Use Cases ...3

2.1 Data Transfer from HDFS clusters ...3

2.2 Cross-version Data Transfer ...3

2.3 User Access Control ... 3

3 Comparison with NameNode's H(S)FTP Interface ...3

3.1 Advantages of Proxy Over NameNode HTTP(S) server.. 3

3.2 Disadvantages of Using Proxy Instead of Getting Data Directly from H(S)FTP
Interface: Slower in speed. This is due to...4

4 Design ... 4

4.1 Design Overview .. 4

4.2 Filter Module: Proxy Authentication and Access Control ... 4

4.3 Delegation Module: HDFS Cross-version Data Transfer .. 6

4.4 Servlets: Where Data transfer Occurs... 8

4.5 Load Balancing and Identifying Requests through Domain Names 8

5 Jetty-based Installation and Configuration ... 9

5.1 Supporting Features ..9

5.2 Configuration Files ...10

5.3 Build Process .. 11

5.4 Server Start up and Shutdown... 11

5.5 Verification ...12

6 Tomcat-based Installation and Configuration ...12

6.1 Supporting Features ..12

6.2 Source Cluster Related Configuration ..12

Copyright © 2009 The Apache Software Foundation. All rights reserved.

6.3 SSL Related Configuration ...12

6.4 LDAP Related Configuration ... 13

6.5 Tomcat Server Related Configuration ..13

6.6 Build and Deployment Process .. 14

6.7 Server Start up and Shutdown... 15

6.8 Verification ...15

7 Hadoop Client Configuration ..15

HDFS Proxy Guide

Page 2
Copyright © 2009 The Apache Software Foundation. All rights reserved.

1. Introduction

HDFS Proxy is a proxy server through which a hadoop client (through HSFTP) or a standard
HTTPS client (wget, curl, etc) can talk to a hadoop server and more importantly pull data
from the sever. It put an access control layer in front of hadoop namenode server and extends
its functionalities to allow hadoop cross-version data transfer.

2. Goals and Use Cases

2.1. Data Transfer from HDFS clusters
• User uses HSFTP protocol (hadoop distcp/fs, etc) to access HDFS proxy to copy out data

stored on one or more HDFS clusters.
• User uses HTTPS protocol (curl, wget, etc) to access HDFS proxy to copy out data stored

on one or more HDFS clusters

2.2. Cross-version Data Transfer

There are multiple HDFS clusters and possibly in different hadoop versions, each holding
different data. A client need to access these data in a standard way without worrying about
version compatibility issues.

2.3. User Access Control
• User Access Control through SSL certificates
• User Access Control through LDAP (Lightweight Directory Access Protocol) server

3. Comparison with NameNode's H(S)FTP Interface

NameNode has a http listener started at dfs.http.address with default port 50070
when NameNode is started and it provided a HFTP interface for the client. Also it could have
a https listener started at dfs.https.address if dfs.https.enable is defined as
true (by default, dfs.https.enable is not defined) to provide a HSFTP interface for
client.

3.1. Advantages of Proxy Over NameNode HTTP(S) server
1. We can centralize access control layer to the proxy part so that NameNode server can

lower its burden. In this sense, HDFS proxy plays a filtering role to control data access to
NameNode and DataNodes. It is especially useful if the HDFS system has some sensitive

HDFS Proxy Guide

Page 3
Copyright © 2009 The Apache Software Foundation. All rights reserved.

data in it.
2. After modulizing HDFS proxy into a standalone package, we can decouple the

complexity of HDFS system and expand the proxy functionalities without worring about
affecting other HDFS system features.

3.2. Disadvantages of Using Proxy Instead of Getting Data Directly from
H(S)FTP Interface: Slower in speed. This is due to
1. HDFS proxy need to first copy data from source cluster, then transfer the data out to the

client.
2. Unlike H(S)FTP interface, where file status listing, etc., is through NameNode server,

and real data transfer is redirected to the real DataNode server, all data transfer under
HDFS proxy is through the proxy server.

4. Design

4.1. Design Overview

As shown in the above figure, in the client-side, proxy server will accept requests from
HSFTP client and HTTPS client. The requests will pass through a filter module (containing
one or more filters) for access control checking. Then the requests will go through a
delegation module, whose responsibility is to direct the requests to the right client version for
accessing the source cluster. After that, the delegated client will talk to the source cluster
server through RPC protocol using servlets.

4.2. Filter Module: Proxy Authentication and Access Control

HDFS Proxy Guide

Page 4
Copyright © 2009 The Apache Software Foundation. All rights reserved.

To realize proxy authentication and access control, we used a servlet filter. The filter module
is very flexible, it can be installed or disabled by simply changing the corresponding items in
deployment descriptor file (web.xml). We implemented two filters in the proxy code:
ProxyFilter and LdapIpDirFilter. The process of how each filter works is listed as below.

4.2.1. SSL certificate-based proxyFilter

1. A user will use a pre-issued SSL certificate to access the proxy.
2. The proxy server will authenticate the user certificate.
3. The user’s authenticated identity (extracted from the user’s SSL certificate) is used to

check access to data on the proxy.
4. User access information is stored in two configuration files, user-certs.xml and

user-permissions.xml.
5. The proxy will forward the user’s authenticated identity to HDFS clusters for HDFS file

permission checking

4.2.2. LDAP-based LdapIpDirFilter

1. A standalone LDAP server need to be set-up to store user information as entries, and each
entry contains userId, user group, IP address(es), allowable HDFS directories, etc.

2. An LDAP entry may contain multiple IP addresses with the same userId and group
attribute to realize headless account.

3. Upon receiving a request, the proxy server will extract the user's Ip adress from the
request header, query the LDAP server with the IP address to get the direcotry permission
information, then compare that with the user request path to make a allow/deny decision.

SSL-based proxyFilter provides strong PKI authentication and encryption, proxy server can

HDFS Proxy Guide

Page 5
Copyright © 2009 The Apache Software Foundation. All rights reserved.

create a self-signed CA using OpenSSL and use that CA to sign and issue certificates to
clients.

Managing access information through configuration files is a convenient way to start and
easy to set-up for a small user group. However, to scale to a large user group and to handle
account management operations such as add, delete, and change access, a separate package
or a different mechanism like LDAP server is needed.

The schema for the entry attributes in the LDAP server should match what is used in the
proxy. The schema that is currently used in proxy is configurable through
hdfsproxy-default.xml, but the attributes should always contain IP address (default as
uniqueMember), userId (default as uid), user group (default as userClass), and alloable
HDFS directories (default as documentLocation).

Users can also write their own filters to plug in the filter chain to realize extended
functionalities.

4.3. Delegation Module: HDFS Cross-version Data Transfer

HDFS Proxy Guide

Page 6
Copyright © 2009 The Apache Software Foundation. All rights reserved.

As shown in the Figure, the delegation module contains two parts:

1. A Forwarding war, which plays the role of identifying the requests and directing the
requests to the right HDFS client RPC version.

2. Several RPC client versions necessary to talk to all the HDFS source cluster servers.

All servlets are packaged in the WAR files.

Strictly speaking, HDFS proxy does not by itself solve HDFS cross-version communication
problem. However, through wrapping all the RPC client versions and delegating the client
requests to the right version of RPC clients, HDFS proxy functions as if it can talk to
multiple source clusters in different hadoop versions.

Packaging the servlets in the WAR files has several advantages:

1. It reduces the complexity of writing our own ClassLoaders for different RPC clients.
Servlet container (Tomcat) already uses separate ClassLoaders for different WAR files.

2. Packaging is done by the Servlet container (Tomcat). For each client WAR file, its
Servlets only need to worry about its own version of source HDFS clusters.

HDFS Proxy Guide

Page 7
Copyright © 2009 The Apache Software Foundation. All rights reserved.

Note that the inter-communication between servlets in the forwarding war and that in the
specific client version war can only be through built-in data types such as int, String, etc, as
such data types are loaded first through common classloader.

4.4. Servlets: Where Data transfer Occurs

Proxy server functionality is implemented using servlets deployed under servlet container.
Specifically, there are 3 proxy servlets ProxyListPathsServlet,
ProxyFileDataServlet, and ProxyStreamFile. Together, they implement the
same H(S)FTP interface as the original ListPathsServlet, FileDataServlet, and
StreamFile servlets do on an HDFS cluster. In fact, the proxy servlets are subclasses of
the original servlets with minor changes like retrieving client UGI from the proxy server, etc.
All these three servlets are put into the client war files.

The forwarding proxy, which was implemented through ProxyForwardServlet, is put
in a separate web application (ROOT.war). All client requests should be sent to the
forwarding proxy. The forwarding proxy does not implement any functionality by itself.
Instead, it simply forwards client requests to the right web applications with the right servlet
paths.

Forwarding servlets forward requests to servlets in the right web applications through servlet
cross-context communication by setting crossContext="true" in servlet container's
configuration file

Proxy server will install a servlet, ProxyFileForward, which is a subclass of
ProxyForwardServlet, on path /file, which exposes a simple HTTPS GET interface
(internally delegates the work to ProxyStreamFile servlet via forwarding mechanism
discussed above). This interface supports standard HTTP clients like curl, wget, etc. HTTPS
client requests on the wire should look like
https://proxy_address/file/file_path

4.5. Load Balancing and Identifying Requests through Domain Names

HDFS Proxy Guide

Page 8
Copyright © 2009 The Apache Software Foundation. All rights reserved.

The delegation module relies on the forwarding WAR to be able to identify the requests so
that it can direct the requests to the right HDFS client RPC versions. Identifying the requests
through Domain Name, which can be extracted from the request header, is a straightforward
way. Note that Domain Name can have many alias through CNAME. By exploiting such a
feature, we can create a Domain Name, then create many alias of this domain name, and
finally make these alias correspond to different client RPC request versions. As the same
time, we may need many servers to do load balancing. We can make all these servers (with
different IP addresses) point to the same Domain Name in a Round-robin fashion. By doing
this, we can realize default load-balancing if we have multiple through proxy servers running
in the back-end.

5. Jetty-based Installation and Configuration

With Jetty-based installation, only part of proxy features are supported.

5.1. Supporting Features
• Single Hadoop source cluster data transfer
• Single Hadoop version data transfer
• Authenticate users via user SSL certificates with ProxyFilter installed

HDFS Proxy Guide

Page 9
Copyright © 2009 The Apache Software Foundation. All rights reserved.

• Enforce access control based on configuration files.

5.2. Configuration Files
1. hdfsproxy-default.xml

Name Description

hdfsproxy.https.address the SSL port that hdfsproxy listens on.

hdfsproxy.hosts location of hdfsproxy-hosts file.

hdfsproxy.dfs.namenode.address namenode address of the HDFS cluster
being proxied.

hdfsproxy.https.server.keystore.resource location of the resource from which ssl
server keystore information will be extracted.

hdfsproxy.user.permissions.file.location location of the user permissions file.

hdfsproxy.user.certs.file.location location of the user certs file.

hdfsproxy.ugi.cache.ugi.lifetime The lifetime (in minutes) of a cached ugi.

2. ssl-server.xml
Name Description

ssl.server.truststore.location location of the truststore.

ssl.server.truststore.password truststore password.

ssl.server.keystore.location location of the keystore.

ssl.server.keystore.password keystore password.

ssl.server.keystore.keypassword key password.

3. user-certs.xml
Name Description

This file defines the mappings from username to comma seperated list of certificate serial
numbers that the user is allowed to use. One mapping per user. Wildcard characters, such as
"*" and "?", are not recognized. Any leading or trailing whitespaces are stripped/ignored. In
order for a user to be able to do "clearUgiCache" and "reloadPermFiles" command, the
certification serial number he use must also belong to the user "Admin".

4. user-permissions.xml
Name Description

This file defines the mappings from user name to comma seperated list of directories/files that
the user is allowed to access. One mapping per user. Wildcard characters, such as "*" and "?",

HDFS Proxy Guide

Page 10
Copyright © 2009 The Apache Software Foundation. All rights reserved.

are not recognized. For example, to match "/output" directory, one can use "/output" or
"/output/", but not "/output/*". Note that any leading or trailing whitespaces are stripped/ignored
for the name field.

5.3. Build Process

Under $HADOOP_HDFS_HOME do the following
$ ant clean tar
$ cd src/contrib/hdfsproxy/
$ ant clean tar
The hdfsproxy-*.tar.gz file will be generated under
$HADOOP_HDFS_HOME/build/contrib/hdfsproxy/. Use this tar ball to proceed
for the server start-up/shutdown process after necessary configuration.

5.4. Server Start up and Shutdown

Starting up a Jetty-based HDFS Proxy server is similar to starting up an HDFS cluster.
Simply run hdfsproxy shell command. The main configuration file is
hdfsproxy-default.xml, which should be on the classpath. hdfsproxy-env.sh
can be used to set up environmental variables. In particular, JAVA_HOME should be set. As
listed above, additional configuration files include user-certs.xml,
user-permissions.xml and ssl-server.xml, which are used to specify allowed
user certs, allowed directories/files, and ssl keystore information for the proxy, respectively.
The location of these files can be specified in hdfsproxy-default.xml. Environmental
variable HDFSPROXY_CONF_DIR can be used to point to the directory where these
configuration files are located. The configuration files (hadoop-site.xml, or
core-site.xml and hdfs-site.xml) of the proxied HDFS cluster should also be
available on the classpath .

Mirroring those used in HDFS, a few shell scripts are provided to start and stop a group of
proxy servers. The hosts to run hdfsproxy on are specified in hdfsproxy-hosts file, one
host per line. All hdfsproxy servers are stateless and run independently from each other.

To start a group of proxy servers, do
$ start-hdfsproxy.sh

To stop a group of proxy servers, do
$ stop-hdfsproxy.sh

To trigger reloading of user-certs.xml and user-permissions.xml files on all
proxy servers listed in the hdfsproxy-hosts file, do
$ hdfsproxy -reloadPermFiles

HDFS Proxy Guide

Page 11
Copyright © 2009 The Apache Software Foundation. All rights reserved.

To clear the UGI caches on all proxy servers, do
$ hdfsproxy -clearUgiCache

5.5. Verification

Use HSFTP client
bin/hadoop fs -ls "hsftp://proxy.address:port/"

6. Tomcat-based Installation and Configuration

With tomcat-based installation, all HDFS Proxy features are supported

6.1. Supporting Features
• Multiple Hadoop source cluster data transfer
• Multiple Hadoop version data transfer
• Authenticate users via user SSL certificates with ProxyFilter installed
• Authentication and authorization via LDAP with LdapIpDirFilter installed
• Access control based on configuration files if ProxyFilter is installed.
• Access control based on LDAP entries if LdapIpDirFilter is installed.
• Standard HTTPS Get Support for file transfer

6.2. Source Cluster Related Configuration
1. hdfsproxy-default.xml

Name Description

fs.default.name Source Cluster NameNode address

dfs.block.size The block size for file tranfers

io.file.buffer.size The size of buffer for use in sequence files.
The size of this buffer should probably be a
multiple of hardware page size (4096 on
Intel x86), and it determines how much data
is buffered during read and write operations

6.3. SSL Related Configuration
1. hdfsproxy-default.xml

Name Description

hdfsproxy.user.permissions.file.location location of the user permissions file.

HDFS Proxy Guide

Page 12
Copyright © 2009 The Apache Software Foundation. All rights reserved.

hdfsproxy.user.certs.file.location location of the user certs file.

hdfsproxy.ugi.cache.ugi.lifetime The lifetime (in minutes) of a cached ugi.

2. user-certs.xml
Name Description

This file defines the mappings from username to comma seperated list of certificate serial
numbers that the user is allowed to use. One mapping per user. Wildcard characters, such as
"*" and "?", are not recognized. Any leading or trailing whitespaces are stripped/ignored. In
order for a user to be able to do "clearUgiCache" and "reloadPermFiles" command, the
certification serial number he use must also belong to the user "Admin".

3. user-permissions.xml
Name Description

This file defines the mappings from user name to comma seperated list of directories/files that
the user is allowed to access. One mapping per user. Wildcard characters, such as "*" and "?",
are not recognized. For example, to match "/output" directory, one can use "/output" or
"/output/", but not "/output/*". Note that any leading or trailing whitespaces are stripped/ignored
for the name field.

6.4. LDAP Related Configuration
1. hdfsproxy-default.xml

Name Description

hdfsproxy.ldap.initial.context.factory LDAP context factory.

hdfsproxy.ldap.provider.url LDAP server address.

hdfsproxy.ldap.role.base LDAP role base.

6.5. Tomcat Server Related Configuration
1. tomcat-forward-web.xml

Name Description

This deployment descritor file defines how servlets and filters are installed in the forwarding war
(ROOT.war). The default filter installed is LdapIpDirFilter, you can change to
ProxyFilter with org.apache.hadoop.hdfsproxy.ProxyFilter as you
filter-class.

2. tomcat-web.xml
Name Description

This deployment descritor file defines how servlets and filters are installed in the client war. The
default filter installed is LdapIpDirFilter, you can change to ProxyFilter with

HDFS Proxy Guide

Page 13
Copyright © 2009 The Apache Software Foundation. All rights reserved.

org.apache.hadoop.hdfsproxy.ProxyFilter as you filter-class.

3. $TOMCAT_HOME/conf/server.xml
Name Description

You need to change Tomcat's server.xml file under $TOMCAT_HOME/conf as detailed in
tomcat 6 ssl-howto. Set clientAuth="true" if you need to authenticate client.

4. $TOMCAT_HOME/conf/context.xml
Name Description

You need to change Tomcat's context.xml file under $TOMCAT_HOME/conf by adding
crossContext="true" after Context.

6.6. Build and Deployment Process

6.6.1. Build forwarding war (ROOT.war)

Suppose hdfsproxy-default.xml has been properly configured and it is under
${user.home}/proxy-root-conf dir. Under $HADOOP_HDFS_HOME do the following
$ export HDFSPROXY_CONF_DIR=${user.home}/proxy-root-conf
$ ant clean tar
$ cd src/contrib/hdfsproxy/
$ ant clean forward
The hdfsproxy-forward-*.war file will be generated under
$HADOOP_HDFS_HOME/build/contrib/hdfsproxy/. Copy this war file to tomcat's
webapps directory and rename it at ROOT.war (if ROOT dir already exists, remove it first)
for deployment.

6.6.2. Build cluster client war (client.war)

Suppose hdfsproxy-default.xml has been properly configured and it is under
${user.home}/proxy-client-conf dir. Under $HADOOP_HDFS_HOME do the following
$ export HDFSPROXY_CONF_DIR=${user.home}/proxy-client-conf
$ ant clean tar
$ cd src/contrib/hdfsproxy/
$ ant clean war
The hdfsproxy-*.war file will be generated under
$HADOOP_HDFS_HOME/build/contrib/hdfsproxy/. Copy this war file to tomcat's
webapps directory and rename it properly for deployment.

6.6.3. Handle Multiple Source Clusters

HDFS Proxy Guide

Page 14
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html

To proxy for multiple source clusters, you need to do the following:

1. Build multiple client war with different names and different hdfsproxy-default.xml
configurations

2. Make multiple alias using CNAME of the same Domain Name
3. Make sure the first part of the alias match the corresponding client war file name. For

example, you have two source clusters, sc1 and sc2, and you made two alias of the same
domain name, proxy1.apache.org and proxy2.apache.org, then you need to name the
client war file as proxy1.war and proxy2.war respectively for your deployment.

6.7. Server Start up and Shutdown

Starting up and shutting down Tomcat-based HDFS Proxy server is no more than starting up
and shutting down tomcat server with tomcat's bin/startup.sh and bin/shutdown.sh script.

If you need to authenticate client certs, you need either set truststoreFile and
truststorePass following tomcat 6 ssl-howto in the configuration stage or give the
truststore location by doing the following
export
JAVA_OPTS="-Djavax.net.ssl.trustStore=${user.home}/truststore-location
-Djavax.net.ssl.trustStorePassword=trustpass"
before you start-up tomcat.

6.8. Verification

HTTPS client
curl -k "https://proxy.address:port/file/file-path"
wget --no-check-certificate
"https://proxy.address:port/file/file-path"

HADOOP client
bin/hadoop fs -ls "hsftp://proxy.address:port/"

7. Hadoop Client Configuration
• ssl-client.xml

Name Description

ssl.client.do.not.authenticate.server if true, trust all server certificates, like curl's
-k option

ssl.client.truststore.location Location of truststore

ssl.client.truststore.password truststore password

HDFS Proxy Guide

Page 15
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html

ssl.client.truststore.type truststore type

ssl.client.keystore.location Location of keystore

ssl.client.keystore.password keystore password

ssl.client.keystore.type keystore type

ssl.client.keystore.keypassword keystore key password

ssl.expiration.warn.days server certificate expiration war days
threshold, 0 means no warning should be
issued

HDFS Proxy Guide

Page 16
Copyright © 2009 The Apache Software Foundation. All rights reserved.

	1 Introduction
	2 Goals and Use Cases
	2.1 Data Transfer from HDFS clusters
	2.2 Cross-version Data Transfer
	2.3 User Access Control

	3 Comparison with NameNode's H(S)FTP Interface
	3.1 Advantages of Proxy Over NameNode HTTP(S) server
	3.2 Disadvantages of Using Proxy Instead of Getting Data Directly from H(S)FTP Interface: Slower in speed. This is due to

	4 Design
	4.1 Design Overview
	4.2 Filter Module: Proxy Authentication and Access Control
	4.2.1 SSL certificate-based proxyFilter
	4.2.2 LDAP-based LdapIpDirFilter

	4.3 Delegation Module: HDFS Cross-version Data Transfer
	4.4 Servlets: Where Data transfer Occurs
	4.5 Load Balancing and Identifying Requests through Domain Names

	5 Jetty-based Installation and Configuration
	5.1 Supporting Features
	5.2 Configuration Files
	5.3 Build Process
	5.4 Server Start up and Shutdown
	5.5 Verification

	6 Tomcat-based Installation and Configuration
	6.1 Supporting Features
	6.2 Source Cluster Related Configuration
	6.3 SSL Related Configuration
	6.4 LDAP Related Configuration
	6.5 Tomcat Server Related Configuration
	6.6 Build and Deployment Process
	6.6.1 Build forwarding war (ROOT.war)
	6.6.2 Build cluster client war (client.war)
	6.6.3 Handle Multiple Source Clusters

	6.7 Server Start up and Shutdown
	6.8 Verification

	7 Hadoop Client Configuration

