
Cluster Setup

Table of contents

1 Purpose...2

2 Pre-requisites..2

3 Installation..2

4 Configuration... 2

4.1 Configuration Files..2

4.2 Site Configuration... 3

4.3 Slaves...19

4.4 Logging..19

5 Cluster Restartability... 20

5.1 Map/Reduce...20

6 Hadoop Rack Awareness... 20

7 Hadoop Startup.. 21

8 Hadoop Shutdown..21

Copyright © 2009 The Apache Software Foundation. All rights reserved.

1. Purpose

This document describes how to install, configure and manage non-trivial Hadoop clusters
ranging from a few nodes to extremely large clusters with thousands of nodes.

To play with Hadoop, you may first want to install Hadoop on a single machine (see Hadoop
Quick Start).

2. Pre-requisites
1. Make sure all requisite software is installed on all nodes in your cluster.
2. Get the Hadoop software.

3. Installation

Installing a Hadoop cluster typically involves unpacking the software on all the machines in
the cluster.

Typically one machine in the cluster is designated as the NameNode and another machine
the as JobTracker, exclusively. These are the masters. The rest of the machines in the
cluster act as both DataNode and TaskTracker. These are the slaves.

The root of the distribution is referred to as HADOOP_HOME. All machines in the cluster
usually have the same HADOOP_HOME path.

4. Configuration

The following sections describe how to configure a Hadoop cluster.

4.1. Configuration Files

Hadoop configuration is driven by two types of important configuration files:

1. Read-only default configuration - src/core/core-default.xml, src/hdfs/hdfs-default.xml,
src/mapred/mapred-default.xml and conf/mapred-queues.xml.template.

2. Site-specific configuration - conf/core-site.xml, conf/hdfs-site.xml, conf/mapred-site.xml
and conf/mapred-queues.xml.

To learn more about how the Hadoop framework is controlled by these configuration files,
look here.

Additionally, you can control the Hadoop scripts found in the bin/ directory of the
distribution, by setting site-specific values via the conf/hadoop-env.sh.

Cluster Setup

Page 2
Copyright © 2009 The Apache Software Foundation. All rights reserved.

single_node_setup.html
single_node_setup.html
single_node_setup.html#PreReqs
single_node_setup.html#Download
http://hadoop.apache.org/common/docs/current/common-default.html
http://hadoop.apache.org/hdfs/docs/current/hdfs-default.html
http://hadoop.apache.org/mapreduce/docs/current/mapred-default.html
http://hadoop.apache.org/mapreduce/docs/current/mapred_queues.xml
api/org/apache/hadoop/conf/Configuration.html

4.2. Site Configuration

To configure the Hadoop cluster you will need to configure the environment in which the
Hadoop daemons execute as well as the configuration parameters for the Hadoop daemons.

The Hadoop daemons are NameNode/DataNode and JobTracker/TaskTracker.

4.2.1. Configuring the Environment of the Hadoop Daemons

Administrators should use the conf/hadoop-env.sh script to do site-specific
customization of the Hadoop daemons' process environment.

At the very least you should specify the JAVA_HOME so that it is correctly defined on each
remote node.

Administrators can configure individual daemons using the configuration options
HADOOP_*_OPTS. Various options available are shown below in the table.

Daemon Configure Options

NameNode HADOOP_NAMENODE_OPTS

DataNode HADOOP_DATANODE_OPTS

SecondaryNamenode HADOOP_SECONDARYNAMENODE_OPTS

JobTracker HADOOP_JOBTRACKER_OPTS

TaskTracker HADOOP_TASKTRACKER_OPTS

For example, To configure Namenode to use parallelGC, the following statement should be
added in hadoop-env.sh :
export HADOOP_NAMENODE_OPTS="-XX:+UseParallelGC
${HADOOP_NAMENODE_OPTS}"

Other useful configuration parameters that you can customize include:

• HADOOP_LOG_DIR - The directory where the daemons' log files are stored. They are
automatically created if they don't exist.

• HADOOP_HEAPSIZE - The maximum amount of heapsize to use, in MB e.g. 1000MB.
This is used to configure the heap size for the hadoop daemon. By default, the value is
1000MB.

4.2.2. Configuring the Hadoop Daemons

Cluster Setup

Page 3
Copyright © 2009 The Apache Software Foundation. All rights reserved.

This section deals with important parameters to be specified in the following:

conf/core-site.xml:

Parameter Value Notes

fs.default.name URI of NameNode. hdfs://hostname/

conf/hdfs-site.xml:

Parameter Value Notes

dfs.name.dir Path on the local filesystem
where the NameNode stores
the namespace and
transactions logs persistently.

If this is a comma-delimited list
of directories then the name
table is replicated in all of the
directories, for redundancy.

dfs.data.dir Comma separated list of paths
on the local filesystem of a
DataNode where it should
store its blocks.

If this is a comma-delimited list
of directories, then data will be
stored in all named directories,
typically on different devices.

conf/mapred-site.xml:

Parameter Value Notes

mapreduce.jobtracker.address Host or IP and port of
JobTracker.

host:port pair.

mapreduce.jobtracker.system.dir Path on the HDFS where
where the Map/Reduce
framework stores system files
e.g.
/hadoop/mapred/system/.

This is in the default filesystem
(HDFS) and must be
accessible from both the server
and client machines.

mapreduce.cluster.local.dir Comma-separated list of paths
on the local filesystem where
temporary Map/Reduce data is
written.

Multiple paths help spread disk
i/o.

mapred.tasktracker.{map|reduce}.tasks.maximumThe maximum number of
Map/Reduce tasks, which are
run simultaneously on a given
TaskTracker, individually.

Defaults to 2 (2 maps and 2
reduces), but vary it depending
on your hardware.

dfs.hosts/dfs.hosts.exclude List of permitted/excluded
DataNodes.

If necessary, use these files to
control the list of allowable
datanodes.

mapreduce.jobtracker.hosts.filename/mapreduce.jobtracker.hosts.exclude.filenameList of permitted/excluded If necessary, use these files to

Cluster Setup

Page 4
Copyright © 2009 The Apache Software Foundation. All rights reserved.

TaskTrackers. control the list of allowable
TaskTrackers.

mapreduce.cluster.job-authorization-enabledBoolean, specifying whether
job ACLs are supported for
authorizing view and
modification of a job

If true, job ACLs would be
checked while viewing or
modifying a job. More details
are available at Job
Authorization.

Typically all the above parameters are marked as final to ensure that they cannot be
overriden by user-applications.

conf/mapred-queues.xml :

This file is used to configure the queues in the Map/Reduce system. Queues are abstract
entities in the JobTracker that can be used to manage collections of jobs. They provide a way
for administrators to organize jobs in specific ways and to enforce certain policies on such
collections, thus providing varying levels of administrative control and management
functions on jobs.

One can imagine the following sample scenarios:

• Jobs submitted by a particular group of users can all be submitted to one queue.
• Long running jobs in an organization can be submitted to a queue.
• Short running jobs can be submitted to a queue and the number of jobs that can run

concurrently can be restricted.

The usage of queues is closely tied to the scheduler configured at the JobTracker via
mapreduce.jobtracker.taskscheduler. The degree of support of queues depends on the
scheduler used. Some schedulers support a single queue, while others support more complex
configurations. Schedulers also implement the policies that apply to jobs in a queue. Some
schedulers, such as the Fairshare scheduler, implement their own mechanisms for collections
of jobs and do not rely on queues provided by the framework. The administrators are
encouraged to refer to the documentation of the scheduler they are interested in for
determining the level of support for queues.

The Map/Reduce framework supports some basic operations on queues such as job
submission to a specific queue, access control for queues, queue states, viewing configured
queues and their properties and refresh of queue properties. In order to fully implement some
of these operations, the framework takes the help of the configured scheduler.

The following types of queue configurations are possible:

• Single queue: The default configuration in Map/Reduce comprises of a single queue, as
supported by the default scheduler. All jobs are submitted to this default queue which

Cluster Setup

Page 5
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://hadoop.apache.org/mapreduce/docs/current/mapred_tutorial.html#Job+Authorization
http://hadoop.apache.org/mapreduce/docs/current/mapred_tutorial.html#Job+Authorization
api/org/apache/hadoop/conf/Configuration.html#FinalParams

maintains jobs in a priority based FIFO order.
• Multiple single level queues: Multiple queues are defined, and jobs can be submitted to

any of these queues. Different policies can be applied to these queues by schedulers that
support this configuration to provide a better level of support. For example, the capacity
scheduler provides ways of configuring different capacity and fairness guarantees on
these queues.

• Hierarchical queues: Hierarchical queues are a configuration in which queues can contain
other queues within them recursively. The queues that contain other queues are referred
to as container queues. Queues that do not contain other queues are referred as leaf or job
queues. Jobs can only be submitted to leaf queues. Hierarchical queues can potentially
offer a higher level of control to administrators, as schedulers can now build a hierarchy
of policies where policies applicable to a container queue can provide context for policies
applicable to queues it contains. It also opens up possibilities for delegating queue
administration where administration of queues in a container queue can be turned over to
a different set of administrators, within the context provided by the container queue. For
example, the capacity scheduler uses hierarchical queues to partition capacity of a cluster
among container queues, and allowing queues they contain to divide that capacity in
more ways.

Most of the configuration of the queues can be refreshed/reloaded without restarting the
Map/Reduce sub-system by editing this configuration file as described in the section on
reloading queue configuration. Not all configuration properties can be reloaded of course, as
will description of each property below explain.

The format of conf/mapred-queues.xml is different from the other configuration files,
supporting nested configuration elements to support hierarchical queues. The format is as
follows:

<queues aclsEnabled="$aclsEnabled">
<queue>
<name>$queue-name</name>
<state>$state</state>
<queue>
<name>$child-queue1</name>
<properties>

<property key="$key" value="$value"/>
...

</properties>
<queue>
<name>$grand-child-queue1</name>
...

</queue>
</queue>
<queue>
<name>$child-queue2</name>

Cluster Setup

Page 6
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://hadoop.apache.org/mapreduce/docs/current/capacity_scheduler.html
http://hadoop.apache.org/mapreduce/docs/current/capacity_scheduler.html
http://hadoop.apache.org/mapreduce/docs/current/capacity_scheduler.html
commands_manual.html#RefreshQueues

...
</queue>
...
...
...
<queue>
<name>$leaf-queue</name>
<acl-submit-job>$acls</acl-submit-job>
<acl-administer-jobs>$acls</acl-administer-jobs>
<properties>

<property key="$key" value="$value"/>
...

</properties>
</queue>

</queue>
</queues>

Tag/Attribute Value Refresh-able? Notes

queues Root element of the
configuration file.

Not-applicable All the queues are
nested inside this root
element of the file.
There can be only one
root queues element in
the file.

aclsEnabled Boolean attribute to the
<queues> tag
specifying whether
ACLs are supported for
controlling job
submission and
administration for all
the queues configured.

Yes If false, ACLs are
ignored for all the
configured queues.
If true, the user and
group details of the
user are checked
against the configured
ACLs of the
corresponding
job-queue while
submitting and
administering jobs.
ACLs can be specified
for each queue using
the queue-specific tags
"acl-$acl_name",
defined below. ACLs
are checked only
against the
job-queues, i.e. the
leaf-level queues;
ACLs configured for
the rest of the queues
in the hierarchy are

Cluster Setup

Page 7
Copyright © 2009 The Apache Software Foundation. All rights reserved.

commands_manual.html#RefreshQueues

ignored.

queue A child element of the
<queues> tag or
another <queue>.
Denotes a queue in the
system.

Not applicable Queues can be
hierarchical and so this
element can contain
children of this same
type.

name Child element of a
<queue> specifying the
name of the queue.

No Name of the queue
cannot contain the
character ":" which is
reserved as the
queue-name delimiter
when addressing a
queue in a hierarchy.

state Child element of a
<queue> specifying the
state of the queue.

Yes Each queue has a
corresponding state. A
queue in 'running' state
can accept new jobs,
while a queue in
'stopped' state will stop
accepting any new
jobs. State is defined
and respected by the
framework only for the
leaf-level queues and
is ignored for all other
queues.
The state of the queue
can be viewed from the
command line using
'bin/mapred
queue' command and
also on the the Web
UI.
Administrators can
stop and start queues
at runtime using the
feature of reloading
queue configuration. If
a queue is stopped at
runtime, it will
complete all the
existing running jobs
and will stop accepting
any new jobs.

Cluster Setup

Page 8
Copyright © 2009 The Apache Software Foundation. All rights reserved.

commands_manual.html#RefreshQueues
commands_manual.html#RefreshQueues

acl-submit-job Child element of a
<queue> specifying the
list of users and groups
that can submit jobs to
the specified queue.

Yes Applicable only to
leaf-queues.
The list of users and
groups are both
comma separated list
of names. The two lists
are separated by a
blank. Example:
user1,user2
group1,group2. If you
wish to define only a
list of groups, provide a
blank at the beginning
of the value.

acl-administer-job Child element of a
<queue> specifying the
list of users and groups
that can change the
priority of a job or kill a
job that has been
submitted to the
specified queue.

Yes Applicable only to
leaf-queues.
The list of users and
groups are both
comma separated list
of names. The two lists
are separated by a
blank. Example:
user1,user2
group1,group2. If you
wish to define only a
list of groups, provide a
blank at the beginning
of the value. Note that
an owner of a job can
always change the
priority or kill his/her
own job, irrespective of
the ACLs.

properties Child element of a
<queue> specifying the
scheduler specific
properties.

Not applicable The scheduler specific
properties are the
children of this element
specified as a group of
<property> tags
described below. The
JobTracker completely
ignores these
properties. These can
be used as per-queue
properties needed by
the scheduler being
configured. Please

Cluster Setup

Page 9
Copyright © 2009 The Apache Software Foundation. All rights reserved.

look at the scheduler
specific documentation
as to how these
properties are used by
that particular
scheduler.

property Child element of
<properties> for a
specific queue.

Not applicable A single scheduler
specific
queue-property.
Ignored by the
JobTracker and used
by the scheduler that is
configured.

key Attribute of a
<property> for a
specific queue.

Scheduler-specific The name of a single
scheduler specific
queue-property.

value Attribute of a
<property> for a
specific queue.

Scheduler-specific The value of a single
scheduler specific
queue-property. The
value can be anything
that is left for the
proper interpretation by
the scheduler that is
configured.

Once the queues are configured properly and the Map/Reduce system is up and running,
from the command line one can get the list of queues and obtain information specific to each
queue. This information is also available from the web UI. On the web UI, queue information
can be seen by going to queueinfo.jsp, linked to from the queues table-cell in the
cluster-summary table. The queueinfo.jsp prints the hierarchy of queues as well as the
specific information for each queue.

Users can submit jobs only to a leaf-level queue by specifying the fully-qualified
queue-name for the property name mapreduce.job.queuename in the job configuration. The
character ':' is the queue-name delimiter and so, for e.g., if one wants to submit to a
configured job-queue 'Queue-C' which is one of the sub-queues of 'Queue-B' which in-turn is
a sub-queue of 'Queue-A', then the job configuration should contain property
mapreduce.job.queuename set to the <value>Queue-A:Queue-B:Queue-C</value>

4.2.3. Real-World Cluster Configurations

This section lists some non-default configuration parameters which have been used to run the

Cluster Setup

Page 10
Copyright © 2009 The Apache Software Foundation. All rights reserved.

commands_manual.html#QueuesList
commands_manual.html#QueuesInfo
commands_manual.html#QueuesInfo

sort benchmark on very large clusters.

• Some non-default configuration values used to run sort900, that is 9TB of data sorted on
a cluster with 900 nodes:

Configuration File Parameter Value Notes

conf/hdfs-site.xml dfs.block.size 134217728 HDFS blocksize of
128MB for large
file-systems.

conf/hdfs-site.xml dfs.namenode.handler.count40 More NameNode
server threads to
handle RPCs from
large number of
DataNodes.

conf/mapred-site.xml mapreduce.reduce.shuffle.parallelcopies20 Higher number of
parallel copies run
by reduces to fetch
outputs from very
large number of
maps.

conf/mapred-site.xml mapreduce.map.java.opts-Xmx512M Larger heap-size
for child jvms of
maps.

conf/mapred-site.xml mapreduce.reduce.java.opts-Xmx512M Larger heap-size
for child jvms of
reduces.

conf/core-site.xml fs.inmemory.size.mb 200 Larger amount of
memory allocated
for the in-memory
file-system used to
merge
map-outputs at the
reduces.

conf/core-site.xml mapreduce.task.io.sort.factor100 More streams
merged at once
while sorting files.

conf/core-site.xml mapreduce.task.io.sort.mb200 Higher
memory-limit while
sorting data.

conf/core-site.xml io.file.buffer.size 131072 Size of read/write
buffer used in

Cluster Setup

Page 11
Copyright © 2009 The Apache Software Foundation. All rights reserved.

SequenceFiles.

• Updates to some configuration values to run sort1400 and sort2000, that is 14TB of data
sorted on 1400 nodes and 20TB of data sorted on 2000 nodes:

Configuration File Parameter Value Notes

conf/mapred-site.xml mapreduce.jobtracker.handler.count60 More JobTracker
server threads to
handle RPCs from
large number of
TaskTrackers.

conf/mapred-site.xml mapreduce.reduce.shuffle.parallelcopies50

conf/mapred-site.xml mapreduce.tasktracker.http.threads50 More worker
threads for the
TaskTracker's http
server. The http
server is used by
reduces to fetch
intermediate
map-outputs.

conf/mapred-site.xml mapreduce.map.java.opts-Xmx512M Larger heap-size
for child jvms of
maps.

conf/mapred-site.xml mapreduce.reduce.java.opts-Xmx1024M Larger heap-size
for child jvms of
reduces.

4.2.4. Configuring Memory Parameters for MapReduce Jobs

As MapReduce jobs could use varying amounts of memory, Hadoop provides various
configuration options to users and administrators for managing memory effectively. Some of
these options are job specific and can be used by users. While setting up a cluster,
administrators can configure appropriate default values for these options so that users jobs
run out of the box. Other options are cluster specific and can be used by administrators to
enforce limits and prevent misconfigured or memory intensive jobs from causing undesired
side effects on the cluster.

The values configured should take into account the hardware resources of the cluster, such as
the amount of physical and virtual memory available for tasks, the number of slots
configured on the slaves and the requirements for other processes running on the slaves. If
right values are not set, it is likely that jobs start failing with memory related errors or in the

Cluster Setup

Page 12
Copyright © 2009 The Apache Software Foundation. All rights reserved.

worst case, even affect other tasks or the slaves themselves.

4.2.4.1. Monitoring Task Memory Usage

Before describing the memory options, it is useful to look at a feature provided by Hadoop to
monitor memory usage of MapReduce tasks it runs. The basic objective of this feature is to
prevent MapReduce tasks from consuming memory beyond a limit that would result in their
affecting other processes running on the slave, including other tasks and daemons like the
DataNode or TaskTracker.

Note: For the time being, this feature is available only for the Linux platform.

Hadoop allows monitoring to be done both for virtual and physical memory usage of tasks.
This monitoring can be done independently of each other, and therefore the options can be
configured independently of each other. It has been found in some environments, particularly
related to streaming, that virtual memory recorded for tasks is high because of libraries
loaded by the programs used to run the tasks. However, this memory is largely unused and
does not affect the slaves's memory itself. In such cases, monitoring based on physical
memory can provide a more accurate picture of memory usage.

This feature considers that there is a limit on the amount of virtual or physical memory on the
slaves that can be used by the running MapReduce tasks. The rest of the memory is assumed
to be required for the system and other processes. Since some jobs may require higher
amount of memory for their tasks than others, Hadoop allows jobs to specify how much
memory they expect to use at a maximum. Then by using resource aware scheduling and
monitoring, Hadoop tries to ensure that at any time, only enough tasks are running on the
slaves as can meet the dual constraints of an individual job's memory requirements and the
total amount of memory available for all MapReduce tasks.

The TaskTracker monitors tasks in regular intervals. Each time, it operates in two steps:

• In the first step, it checks that a job's task and any child processes it launches are not
cumulatively using more virtual or physical memory than specified. If both virtual and
physical memory monitoring is enabled, then virtual memory usage is checked first,
followed by physical memory usage. Any task that is found to use more memory is killed
along with any child processes it might have launched, and the task status is marked
failed. Repeated failures such as this will terminate the job.

• In the next step, it checks that the cumulative virtual and physical memory used by all
running tasks and their child processes does not exceed the total virtual and physical
memory limit, respectively. Again, virtual memory limit is checked first, followed by
physical memory limit. In this case, it kills enough number of tasks, along with any child
processes they might have launched, until the cumulative memory usage is brought under
limit. In the case of virtual memory limit being exceeded, the tasks chosen for killing are

Cluster Setup

Page 13
Copyright © 2009 The Apache Software Foundation. All rights reserved.

the ones that have made the least progress. In the case of physical memory limit being
exceeded, the tasks chosen for killing are the ones that have used the maximum amount
of physical memory. Also, the status of these tasks is marked as killed, and hence
repeated occurrence of this will not result in a job failure.

In either case, the task's diagnostic message will indicate the reason why the task was
terminated.

Resource aware scheduling can ensure that tasks are scheduled on a slave only if their
memory requirement can be satisfied by the slave. The Capacity Scheduler, for example,
takes virtual memory requirements into account while scheduling tasks, as described in the
section on memory based scheduling.

Memory monitoring is enabled when certain configuration variables are defined with
non-zero values, as described below.

4.2.4.2. Job Specific Options

Memory related options that can be configured individually per job are described in detail in
the section on Configuring Memory Requirements For A Job in the MapReduce tutorial.
While setting up the cluster, the Hadoop defaults for these options can be reviewed and
changed to better suit the job profiles expected to be run on the clusters, as also the hardware
configuration.

As with any other configuration option in Hadoop, if the administrators desire to prevent
users from overriding these options in jobs they submit, these values can be marked as final
in the cluster configuration.

4.2.4.3. Cluster Specific Options

This section describes the memory related options that are used by the JobTracker and
TaskTrackers, and cannot be changed by jobs. The values set for these options should be the
same for all the slave nodes in a cluster.

• mapreduce.cluster.{map|reduce}memory.mb: These options define the
default amount of virtual memory that should be allocated for MapReduce tasks running
in the cluster. They typically match the default values set for the options
mapreduce.{map|reduce}.memory.mb. They help in the calculation of the total
amount of virtual memory available for MapReduce tasks on a slave, using the following
equation:
Total virtual memory for all MapReduce tasks = (mapreduce.cluster.mapmemory.mb *
mapreduce.tasktracker.map.tasks.maximum) + (mapreduce.cluster.reducememory.mb *
mapreduce.tasktracker.reduce.tasks.maximum)

Cluster Setup

Page 14
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://hadoop.apache.org/mapreduce/docs/current/capacity_scheduler.html#Scheduling+Tasks+Considering+Memory+Requirements
http://hadoop.apache.org/mapreduce/docs/current/mapred_tutorial.html#Configuring+Memory+Requirements+For+A+Job

Typically, reduce tasks require more memory than map tasks. Hence a higher value is
recommended for mapreduce.cluster.reducememory.mb. The value is specified in MB.
To set a value of 2GB for reduce tasks, set mapreduce.cluster.reducememory.mb to 2048.

• mapreduce.jobtracker.max{map|reduce}memory.mb: These options define
the maximum amount of virtual memory that can be requested by jobs using the
parameters mapreduce.{map|reduce}.memory.mb. The system will reject any
job that is submitted requesting for more memory than these limits. Typically, the values
for these options should be set to satisfy the following constraint:
mapreduce.jobtracker.maxmapmemory.mb = mapreduce.cluster.mapmemory.mb *
mapreduce.tasktracker.map.tasks.maximum
mapreduce.jobtracker.maxreducememory.mb = mapreduce.cluster.reducememory.mb *
mapreduce.tasktracker.reduce.tasks.maximum
The value is specified in MB. If mapreduce.cluster.reducememory.mb is set
to 2GB and there are 2 reduce slots configured in the slaves, the value for
mapreduce.jobtracker.maxreducememory.mb should be set to 4096.

• mapreduce.tasktracker.reserved.physicalmemory.mb: This option
defines the amount of physical memory that is marked for system and daemon processes.
Using this, the amount of physical memory available for MapReduce tasks is calculated
using the following equation:
Total physical memory for all MapReduce tasks = Total physical memory available on
the system - mapreduce.tasktracker.reserved.physicalmemory.mb
The value is specified in MB. To set this value to 2GB, specify the value as 2048.

• mapreduce.tasktracker.taskmemorymanager.monitoringinterval:
This option defines the time the TaskTracker waits between two cycles of memory
monitoring. The value is specified in milliseconds.

Note: The virtual memory monitoring function is only enabled if the variables
mapreduce.cluster.{map|reduce}memory.mb and
mapreduce.jobtracker.max{map|reduce}memory.mb are set to values greater
than zero. Likewise, the physical memory monitoring function is only enabled if the variable
mapreduce.tasktracker.reserved.physicalmemory.mb is set to a value
greater than zero.

4.2.5. Task Controllers

Task controllers are classes in the Hadoop Map/Reduce framework that define how user's
map and reduce tasks are launched and controlled. They can be used in clusters that require
some customization in the process of launching or controlling the user tasks. For example, in
some clusters, there may be a requirement to run tasks as the user who submitted the job,
instead of as the task tracker user, which is how tasks are launched by default. This section
describes how to configure and use task controllers.

Cluster Setup

Page 15
Copyright © 2009 The Apache Software Foundation. All rights reserved.

The following task controllers are the available in Hadoop.

Name Class Name Description

DefaultTaskController org.apache.hadoop.mapred.DefaultTaskControllerThe default task controller
which Hadoop uses to manage
task execution. The tasks run
as the task tracker user.

LinuxTaskController org.apache.hadoop.mapred.LinuxTaskControllerThis task controller, which is
supported only on Linux, runs
the tasks as the user who
submitted the job. It requires
these user accounts to be
created on the cluster nodes
where the tasks are launched.
It uses a setuid executable that
is included in the Hadoop
distribution. The task tracker
uses this executable to launch
and kill tasks. The setuid
executable switches to the user
who has submitted the job and
launches or kills the tasks. For
maximum security, this task
controller sets up restricted
permissions and user/group
ownership of local files and
directories used by the tasks
such as the job jar files,
intermediate files, task log files
and distributed cache files.
Particularly note that, because
of this, except the job owner
and tasktracker, no other user
can access any of the local
files/directories including those
localized as part of the
distributed cache.

4.2.5.1. Configuring Task Controllers

The task controller to be used can be configured by setting the value of the following key in
mapred-site.xml

Property Value Notes

mapreduce.tasktracker.taskcontrollerFully qualified class name of Currently there are two

Cluster Setup

Page 16
Copyright © 2009 The Apache Software Foundation. All rights reserved.

the task controller class implementations of task
controller in the Hadoop
system, DefaultTaskController
and LinuxTaskController. Refer
to the class names mentioned
above to determine the value to
set for the class of choice.

4.2.5.2. Using the LinuxTaskController

This section of the document describes the steps required to use the LinuxTaskController.

In order to use the LinuxTaskController, a setuid executable should be built and deployed on
the compute nodes. The executable is named task-controller. To build the executable, execute
ant task-controller -Dhadoop.conf.dir=/path/to/conf/dir. The path passed in
-Dhadoop.conf.dir should be the path on the cluster nodes where a configuration file for the
setuid executable would be located. The executable would be built to build.dir/dist.dir/bin
and should be installed to $HADOOP_HOME/bin.

The executable must have specific permissions as follows. The executable should have 6050
or --Sr-s--- permissions user-owned by root(super-user) and group-owned by a special group
of which the TaskTracker's user is the group member and no job submitter is. If any job
submitter belongs to this special group, security will be compromised. This special group
name should be specified for the configuration property "mapreduce.tasktracker.group" in
both mapred-site.xml and task-controller.cfg. For example, let's say that the TaskTracker is
run as user mapred who is part of the groups users and specialGroup any of them being the
primary group. Let also be that users has both mapred and another user (job submitter) X as
its members, and X does not belong to specialGroup. Going by the above description, the
setuid/setgid executable should be set 6050 or --Sr-s--- with user-owner as mapred and
group-owner as specialGroup which has mapred as its member(and not users which has X
also as its member besides mapred).

The LinuxTaskController requires that paths including and leading up to the directories
specified in mapreduce.cluster.local.dir and hadoop.log.dir to be set 755 permissions.

task-controller.cfg

The executable requires a configuration file called taskcontroller.cfg to be present in the
configuration directory passed to the ant target mentioned above. If the binary was not built
with a specific conf directory, the path defaults to /path-to-binary/../conf. The configuration
file must be owned by the user running TaskTracker (user mapred in the above example),
group-owned by anyone and should have the permissions 0400 or r--------.

Cluster Setup

Page 17
Copyright © 2009 The Apache Software Foundation. All rights reserved.

The executable requires following configuration items to be present in the taskcontroller.cfg
file. The items should be mentioned as simple key=value pairs.

Name Description

mapreduce.cluster.local.dir Path to mapreduce.cluster.local.directories.
Should be same as the value which was
provided to key in mapred-site.xml. This is
required to validate paths passed to the setuid
executable in order to prevent arbitrary paths
being passed to it.

hadoop.log.dir Path to hadoop log directory. Should be same
as the value which the TaskTracker is started
with. This is required to set proper permissions
on the log files so that they can be written to by
the user's tasks and read by the TaskTracker for
serving on the web UI.

mapreduce.tasktracker.group Group to which the TaskTracker belongs. The
group owner of the taskcontroller binary should
be this group. Should be same as the value with
which the TaskTracker is configured. This
configuration is required for validating the secure
access of the task-controller binary.

4.2.6. Monitoring Health of TaskTracker Nodes

Hadoop Map/Reduce provides a mechanism by which administrators can configure the
TaskTracker to run an administrator supplied script periodically to determine if a node is
healthy or not. Administrators can determine if the node is in a healthy state by performing
any checks of their choice in the script. If the script detects the node to be in an unhealthy
state, it must print a line to standard output beginning with the string ERROR. The
TaskTracker spawns the script periodically and checks its output. If the script's output
contains the string ERROR, as described above, the node's status is reported as 'unhealthy'
and the node is black-listed on the JobTracker. No further tasks will be assigned to this node.
However, the TaskTracker continues to run the script, so that if the node becomes healthy
again, it will be removed from the blacklisted nodes on the JobTracker automatically. The
node's health along with the output of the script, if it is unhealthy, is available to the
administrator in the JobTracker's web interface. The time since the node was healthy is also
displayed on the web interface.

4.2.6.1. Configuring the Node Health Check Script

The following parameters can be used to control the node health monitoring script in

Cluster Setup

Page 18
Copyright © 2009 The Apache Software Foundation. All rights reserved.

mapred-site.xml.

Name Description

mapreduce.tasktracker.healthchecker.script.pathAbsolute path to the script which is periodically
run by the TaskTracker to determine if the node
is healthy or not. The file should be executable
by the TaskTracker. If the value of this key is
empty or the file does not exist or is not
executable, node health monitoring is not
started.

mapreduce.tasktracker.healthchecker.intervalFrequency at which the node health script is run,
in milliseconds

mapreduce.tasktracker.healthchecker.script.timeoutTime after which the node health script will be
killed by the TaskTracker if unresponsive. The
node is marked unhealthy. if node health script
times out.

mapreduce.tasktracker.healthchecker.script.argsExtra arguments that can be passed to the node
health script when launched. These should be
comma separated list of arguments.

4.3. Slaves

Typically you choose one machine in the cluster to act as the NameNode and one machine
as to act as the JobTracker, exclusively. The rest of the machines act as both a
DataNode and TaskTracker and are referred to as slaves.

List all slave hostnames or IP addresses in your conf/slaves file, one per line.

4.4. Logging

Hadoop uses the Apache log4j via the Apache Commons Logging framework for logging.
Edit the conf/log4j.properties file to customize the Hadoop daemons' logging
configuration (log-formats and so on).

4.4.1. History Logging

The job history files are stored in central location
mapreduce.jobtracker.jobhistory.location which can be on DFS also,
whose default value is ${HADOOP_LOG_DIR}/history. The history web UI is
accessible from job tracker web UI.

The history files are also logged to user specified directory

Cluster Setup

Page 19
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://logging.apache.org/log4j/
http://commons.apache.org/logging/

mapreduce.job.userhistorylocation which defaults to job output directory. The
files are stored in "_logs/history/" in the specified directory. Hence, by default they will be in
"mapreduce.output.fileoutputformat.outputdir/_logs/history/". User can stop logging by
giving the value none for mapreduce.job.userhistorylocation

User can view the history logs summary in specified directory using the following command
$ bin/hadoop job -history output-dir
This command will print job details, failed and killed tip details.
More details about the job such as successful tasks and task attempts made for each task can
be viewed using the following command
$ bin/hadoop job -history all output-dir

Once all the necessary configuration is complete, distribute the files to the
HADOOP_CONF_DIR directory on all the machines, typically ${HADOOP_HOME}/conf.

5. Cluster Restartability

5.1. Map/Reduce

The job tracker restart can recover running jobs if
mapreduce.jobtracker.restart.recover is set true and JobHistory logging is
enabled. Also mapreduce.jobtracker.jobhistory.block.size value should be
set to an optimal value to dump job history to disk as soon as possible, the typical value is
3145728(3MB).

6. Hadoop Rack Awareness

The HDFS and the Map/Reduce components are rack-aware.

The NameNode and the JobTracker obtains the rack id of the slaves in the cluster by
invoking an API resolve in an administrator configured module. The API resolves the slave's
DNS name (also IP address) to a rack id. What module to use can be configured using the
configuration item topology.node.switch.mapping.impl. The default
implementation of the same runs a script/command configured using
topology.script.file.name. If topology.script.file.name is not set, the rack id
/default-rack is returned for any passed IP address. The additional configuration in the
Map/Reduce part is mapred.cache.task.levels which determines the number of
levels (in the network topology) of caches. So, for example, if it is the default value of 2, two
levels of caches will be constructed - one for hosts (host -> task mapping) and another for
racks (rack -> task mapping).

Cluster Setup

Page 20
Copyright © 2009 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/net/DNSToSwitchMapping.html#resolve(java.util.List)

7. Hadoop Startup

To start a Hadoop cluster you will need to start both the HDFS and Map/Reduce cluster.

Format a new distributed filesystem:
$ bin/hadoop namenode -format

Start the HDFS with the following command, run on the designated NameNode:
$ bin/start-dfs.sh

The bin/start-dfs.sh script also consults the ${HADOOP_CONF_DIR}/slaves
file on the NameNode and starts the DataNode daemon on all the listed slaves.

Start Map-Reduce with the following command, run on the designated JobTracker:
$ bin/start-mapred.sh

The bin/start-mapred.sh script also consults the
${HADOOP_CONF_DIR}/slaves file on the JobTracker and starts the
TaskTracker daemon on all the listed slaves.

8. Hadoop Shutdown

Stop HDFS with the following command, run on the designated NameNode:
$ bin/stop-dfs.sh

The bin/stop-dfs.sh script also consults the ${HADOOP_CONF_DIR}/slaves file
on the NameNode and stops the DataNode daemon on all the listed slaves.

Stop Map/Reduce with the following command, run on the designated the designated
JobTracker:
$ bin/stop-mapred.sh

The bin/stop-mapred.sh script also consults the ${HADOOP_CONF_DIR}/slaves
file on the JobTracker and stops the TaskTracker daemon on all the listed slaves.

Cluster Setup

Page 21
Copyright © 2009 The Apache Software Foundation. All rights reserved.

	1 Purpose
	2 Pre-requisites
	3 Installation
	4 Configuration
	4.1 Configuration Files
	4.2 Site Configuration
	4.2.1 Configuring the Environment of the Hadoop Daemons
	4.2.2 Configuring the Hadoop Daemons
	4.2.3 Real-World Cluster Configurations
	4.2.4 Configuring Memory Parameters for MapReduce Jobs
	4.2.4.1 Monitoring Task Memory Usage
	4.2.4.2 Job Specific Options
	4.2.4.3 Cluster Specific Options

	4.2.5 Task Controllers
	4.2.5.1 Configuring Task Controllers
	4.2.5.2 Using the LinuxTaskController
	4.2.5.2.1 task-controller.cfg

	4.2.6 Monitoring Health of TaskTracker Nodes
	4.2.6.1 Configuring the Node Health Check Script

	4.3 Slaves
	4.4 Logging
	4.4.1 History Logging

	5 Cluster Restartability
	5.1 Map/Reduce

	6 Hadoop Rack Awareness
	7 Hadoop Startup
	8 Hadoop Shutdown

