
Permissions Guide

Table of contents

1 Overview............................................................................................................................2

2 User Identity.......................................................................................................................2

3 Understanding the Implementation....................................................................................3

4 Changes to the File System API........................................................................................ 3

5 Changes to the Application Shell.......................................................................................4

6 The Super-User.................................................................................................................. 4

7 The Web Server................................................................................................................. 5

8 On-line Upgrade.................................................................................................................5

9 Configuration Parameters.................................................................................................. 5

Copyright © 2009 The Apache Software Foundation. All rights reserved.



1. Overview

The Hadoop Distributed File System (HDFS) implements a permissions model for files and
directories that shares much of the POSIX model. Each file and directory is associated with
an owner and a group. The file or directory has separate permissions for the user that is the
owner, for other users that are members of the group, and for all other users. For files, the r
permission is required to read the file, and the w permission is required to write or append to
the file. For directories, the r permission is required to list the contents of the directory, the w
permission is required to create or delete files or directories, and the x permission is required
to access a child of the directory.

In contrast to the POSIX model, there are no setuid or setgid bits for files as there is no
notion of executable files. For directories, there are no setuid or setgid bits directory as a
simplification. The Sticky bit can be set on directories, preventing anyone except the
superuser, directory owner or file owner from deleting or moving the files within the
directory. Setting the sticky bit for a file has no effect. Collectively, the permissions of a file
or directory are its mode. In general, Unix customs for representing and displaying modes
will be used, including the use of octal numbers in this description. When a file or directory
is created, its owner is the user identity of the client process, and its group is the group of the
parent directory (the BSD rule).

Each client process that accesses HDFS has a two-part identity composed of the user name,
and groups list. Whenever HDFS must do a permissions check for a file or directory foo
accessed by a client process,

• If the user name matches the owner of foo, then the owner permissions are tested;
• Else if the group of foo matches any of member of the groups list, then the group

permissions are tested;
• Otherwise the other permissions of foo are tested.

If a permissions check fails, the client operation fails.

2. User Identity

In this release of Hadoop the identity of a client process is just whatever the host operating
system says it is. For Unix-like systems,

• The user name is the equivalent of `whoami`;
• The group list is the equivalent of `bash -c groups`.

In the future there will be other ways of establishing user identity (think Kerberos, LDAP,
and others). There is no expectation that this first method is secure in protecting one user

Permissions Guide

Page 2
Copyright © 2009 The Apache Software Foundation. All rights reserved.



from impersonating another. This user identity mechanism combined with the permissions
model allows a cooperative community to share file system resources in an organized
fashion.

In any case, the user identity mechanism is extrinsic to HDFS itself. There is no provision
within HDFS for creating user identities, establishing groups, or processing user credentials.

3. Understanding the Implementation

Each file or directory operation passes the full path name to the name node, and the
permissions checks are applied along the path for each operation. The client framework will
implicitly associate the user identity with the connection to the name node, reducing the need
for changes to the existing client API. It has always been the case that when one operation on
a file succeeds, the operation might fail when repeated because the file, or some directory on
the path, no longer exists. For instance, when the client first begins reading a file, it makes a
first request to the name node to discover the location of the first blocks of the file. A second
request made to find additional blocks may fail. On the other hand, deleting a file does not
revoke access by a client that already knows the blocks of the file. With the addition of
permissions, a client's access to a file may be withdrawn between requests. Again, changing
permissions does not revoke the access of a client that already knows the file's blocks.

The MapReduce framework delegates the user identity by passing strings without special
concern for confidentiality. The owner and group of a file or directory are stored as strings;
there is no conversion from user and group identity numbers as is conventional in Unix.

The permissions features of this release did not require any changes to the behavior of data
nodes. Blocks on the data nodes do not have any of the Hadoop ownership or permissions
attributes associated with them.

4. Changes to the File System API

All methods that use a path parameter will throw AccessControlException if
permission checking fails.

New methods:

• public FSDataOutputStream create(Path f, FsPermission
permission, boolean overwrite, int bufferSize, short
replication, long blockSize, Progressable progress) throws
IOException;

• public boolean mkdirs(Path f, FsPermission permission)
throws IOException;

Permissions Guide

Page 3
Copyright © 2009 The Apache Software Foundation. All rights reserved.



• public void setPermission(Path p, FsPermission permission)
throws IOException;

• public void setOwner(Path p, String username, String
groupname) throws IOException;

• public FileStatus getFileStatus(Path f) throws IOException;
will additionally return the user, group and mode associated with the path.

The mode of a new file or directory is restricted my the umask set as a configuration
parameter. When the existing create(path, …) method (without the permission
parameter) is used, the mode of the new file is 666&^umask. When the new
create(path, permission, …) method (with the permission parameter P) is used, the
mode of the new file is P&^umask&666. When a new directory is created with the existing
mkdirs(path) method (without the permission parameter), the mode of the new directory
is 777&^umask. When the new mkdirs(path, permission ) method (with the
permission parameter P) is used, the mode of new directory is P&^umask&777.

5. Changes to the Application Shell

New operations:

• chmod [-R] mode file …
Only the owner of a file or the super-user is permitted to change the mode of a file.

• chgrp [-R] group file …
The user invoking chgrp must belong to the specified group and be the owner of the
file, or be the super-user.

• chown [-R] [owner][:[group]] file …
The owner of a file may only be altered by a super-user.

• ls file …
• lsr file …

The output is reformatted to display the owner, group and mode.

6. The Super-User

The super-user is the user with the same identity as name node process itself. Loosely, if you
started the name node, then you are the super-user. The super-user can do anything in that
permissions checks never fail for the super-user. There is no persistent notion of who was the
super-user; when the name node is started the process identity determines who is the
super-user for now. The HDFS super-user does not have to be the super-user of the name
node host, nor is it necessary that all clusters have the same super-user. Also, an
experimenter running HDFS on a personal workstation, conveniently becomes that
installation's super-user without any configuration.

Permissions Guide

Page 4
Copyright © 2009 The Apache Software Foundation. All rights reserved.



In addition, the administrator my identify a distinguished group using a configuration
parameter. If set, members of this group are also super-users.

7. The Web Server

The identity of the web server is a configuration parameter. That is, the name node has no
notion of the identity of the real user, but the web server behaves as if it has the identity (user
and groups) of a user chosen by the administrator. Unless the chosen identity matches the
super-user, parts of the name space may be invisible to the web server.

8. On-line Upgrade

If a cluster starts with a version 0.15 data set (fsimage), all files and directories will have
owner O, group G, and mode M, where O and G are the user and group identity of the
super-user, and M is a configuration parameter.

9. Configuration Parameters
• dfs.permissions = true

If yes use the permissions system as described here. If no, permission checking is turned
off, but all other behavior is unchanged. Switching from one parameter value to the other
does not change the mode, owner or group of files or directories.
Regardless of whether permissions are on or off, chmod, chgrp and chown always
check permissions. These functions are only useful in the permissions context, and so
there is no backwards compatibility issue. Furthermore, this allows administrators to
reliably set owners and permissions in advance of turning on regular permissions
checking.

• dfs.web.ugi = webuser,webgroup
The user name to be used by the web server. Setting this to the name of the super-user
allows any web client to see everything. Changing this to an otherwise unused identity
allows web clients to see only those things visible using "other" permissions. Additional
groups may be added to the comma-separated list.

• dfs.permissions.supergroup = supergroup
The name of the group of super-users.

• dfs.upgrade.permission = 0777
The choice of initial mode during upgrade. The x permission is never set for files. For
configuration files, the decimal value 51110 may be used.

• dfs.umask = 022
The umask used when creating files and directories. For configuration files, the decimal
value 1810 may be used.

Permissions Guide

Page 5
Copyright © 2009 The Apache Software Foundation. All rights reserved.



Permissions Guide

Page 6
Copyright © 2009 The Apache Software Foundation. All rights reserved.


	1 Overview
	2 User Identity
	3 Understanding the Implementation
	4 Changes to the File System API
	5 Changes to the Application Shell
	6 The Super-User
	7 The Web Server
	8 On-line Upgrade
	9 Configuration Parameters

