This document was developed by Ananta Manandhar to describe new software to utilize GSI delegation capabilities. The software he developed is now part of the SRB source tree in the aid.c library and is utilized via the new SRB GSI_DELEGATE authentication mechanism. Ananta is a member of the Data Management Group of the CLRC e-Science Centre in the United Kingdom and was visiting SDSC in late 2003/early 2004 to collaborate with the SRB team on this project.

Table of Contents

Use of GSI authentication and delegation mechanism in SRB
2

Working Structure
2

Key benefits of GSI
2

Possible interest in GSI for SRB
3

1. Interoperability between other Grid aware applications
3

2. Use for internal security mechanism for SRB federation.
3

Current status
5

Current Addition
5

Delegation
5

The added routines for delegation are:
5

Routine for creating a security context between the parties and accepting delegated certificate along with it.
5

Routines for initiating Delegation at any time
5

Routines for serializing Delegation for future use or for making delegated certificate available for third parities.
6

Routine for creating a security context with a third service on behalf of the user
6

Routine for viewing the remaining valid lifetime of the delegated credential
6

Delegation routine descriptions
6

 int aid_establish_context_serverside_with_delegate(fd, clientName, max_len_clientName, type_flag)
6

int aid_establish_context_clientside_without_server_dn(int fd, char* serverName, int max_len_serverName, int deleg_flag,int type_flag)
7

int aid_init_delegation(int fd, OM_uint32 delegation_time)
7

 int aid_accept_delegation(int fd)
8

 int aid_export_delegate(int fd)
8

 int aid_import_delegate(int fd)
9

int aid_establish_context_using_client_delegate(fd, server_dn_in,server_dn_out, max_len_server_dn_out, received_delegation_fd, deleg_flag)
9

int aid_get_remaining_delegate_lifetime(int fd)
10

Possible use of GSI within SRB (For discussion)
11

Version :
1.0

Date:

03 March 2004

Use of GSI authentication and delegation mechanism in SRB

The Grid security infrastructure is one of the reasonably mature product to come out from the Globus project. It is based on Public key infrastructure with an aim to provide a reliable common authentication mechanism between applications in an distributed environment.

Working Structure

GSI is based on Generic Security Service API (GSS API) interface [RFC 2743] [RFC 2744]. It is neutral to the type of transport protocol as it is based on token exchange which can be passed using any transport mechanism. In a brief description of its working, the GSI utilizes the user's or service's public key pair as the credentials for representing the user or service. It creates a security context between the communicating parties by the process of mutual authentication for secure information exchange between the parties.

For intercommunicating in an distributed environment it supports the notion of delegation of identity whereby a user may temporarily delegate his/her privileges to the service, authorizing the service to perform on his/her behalf. The delegation extensions to GSS API are currently in RFC draft stages.

Key benefits of GSI

1. Login can be performed by the user by the use of certificates which is verified by the certificate chain and trustworthiness of the Certificate Authority.

2. With the use of delegation, a user can authorize a remote server to perform certain tasks on behalf of himself/herself.

3. As both participating parties use certificates there is a possibility for server to authenticate the client as well as for the client to authenticate the server.

4. Bindings are present for multiple languages such as C, Java and Python.

5. There would be ease in interoperability between other Grid applications.

6. There is an increasing use of GSI in more applications targeted towards an Grid environment, interoperability between other grid applications would be easier as they share the same authentication mechanism.

7. Due to the properties of public key cryptography whereby a certificate pair is a self contained entity with the ability to authenticate itself, it seems suitable mechanism for authentication in distributed computing environments. (explained below)

Possible interest in GSI for SRB

1. Interoperability between other Grid aware applications

Ability for third party applications (Grid Applications) to request files (insert files) from SRB. Also SRB could have the ability to utilize third party applications that share the same authentication mechanism. An example could retrieval of file from Grid FTP. Another example could be SRB queries a third application for additional information to the file and then provide the file back to the user.

[image: image1.png]File Get Sequence with a remote user loggin in to retrive
a file.

USER C | SRE B2 SRB BL SRE CL

MCAT MCAT

Mutlgl Authentglate
P e pgfhefiticats with Usep fort
3er1fy on

connect.

ack
le—ack |

get File d¢sclription
]

E;}c File

return File

2. Use for internal security mechanism for SRB federation.

An ideal federation architecture could possibly be closer to a peer to peer architecture whereby each entity is a self contained with the ability to independently work as an self entity and be able to inter operate with the participating entities. In the case of SRB each entity is termed as a Zone.

Due to the properties of public key cryptography whereby a certificate pair is a self contained entity with the ability to authenticate itself, it seems suitable mechanism for authentication in a federated environment. For example a user could log it to any of the participating Zones in SRB without the need for communication with its home zone if user's privileges (Access control Information) is shared between all the participating Zones in SRB.

A possible deployment of Federated SRB could be make as described in Fig 2 from a current SRB 2.0 Deployment strategy as depicted in Fig 1.

Fig 1. SRB 2.0 Collaborative VO

[image: image2.png]File Get Sequence by logging in to Local Zone and
retrieving file stored in Remote Zone

USER C | SRE C2 SRB CL BB BL SEB B2

MCAT MCAT
Connect.

ert
2id

ME ¥
[*meTegee?] §rith ugds
.
sok ack -
e I

get file
MA with hsdr cert

et File [Details
g.gturn Filelpelails

B with usér [Cert + deleghte

get Filel
B with ugdr cert
File D?t i1

Yy

| (Beturn Flle

Return File
—

Fig 2. Possible Collaborative VO with federation.

· Each Zone is an independent entity which maintains the inodes and resource information of only its local zone and has the ability to communicate with other participating zones.

· User accounts can be created in only one Zone (suppose Zone West for example) and be managed only in that zone

· User Information can be synchronized between all the zones. Concurrency may not be an issue as the rate of change of user information is not very frequent

· A User may log into any Zone which ever is closer to to it and utilize.

· The local zone will be able to authenticate it based on its certificate and can allow the user to use its resources without the need for it to contact the user's home zone.

· If the zones are distant it would save much on access time.

· Also another use of federation would be fragmentation. Suppose Zone Europe is down, Zone East and Zone west may still continue to work without problem. With only Zone Europe being inaccessible.

Current status

1. SRB currently utilizes GSI as one of the many methods to accept a connection from a user.

Current Addition

Delegation

Seven new routines have been added to the current SRB GSI Authentication library for enabling SRB with GSI delegation.

The added routines for delegation are:

Routine for creating a security context between the parties and accepting delegated certificate along with it.

1. int aid_establish_context_serverside_with_delegate(fd, clientName, max_len_clientName, type_flag)

The about routine is utilized by the server application in creating a security context with its client and it receives the client's delegated certificate along with it. The client uses the existing method

int aid_establish_context_clientside(fd, service_name, deleg_flag, type_flag) with attribute deleg_flag = 1 to initiate a security context.

The delegated credential is saved in the internal memory structure within the AID library and can be exported or for use by other process.

Routine for initiating Security context without providing Server DN

2. int aid_establish_context_clientside_without_server_dn(fd, serverName,

max_len_serverName, deleg_flag, type_flag)

This routine complements aid_establish_context_clientside() . It eliminates the need for the client to provide the Server DN while establishing context and rather returns the server DN in serverName. However in this process only the client is authenticated by the server and the server isn't authenticated bythe client. The client may later view the DN of the server from serverName and decide if it would like to continue transaction.

Routines for initiating Delegation at any time

3. int aid_init_delegation(int fd, OM_uint32 delegation_time)

4. int aid_accept_delegation(int fd)

At anytime during the course of transactions any of the party can initiate delegation of its credential to the remote party authorizing the remote party to work on behalf of it. aid_init_delegation() is used to initiate delegation and its counterpart aid_accept_delegation() is used to accept delegation from the other end.

The delegated credential is saved in the internal memory structure within the AID library and can be exported for use by other process.

Routines for serializing Delegation for future use or for making delegated certificate available for third parities.

5. int aid_export_delegate(int fd)

6. int aid_import_delegate(int fd)

aid_export_delegate() seriliazes the delegated proxy certificate of the user to the file system . This can then be retrieved by invoking aid_import_delegate certificate at a later instance or be retrieved by a third party application.

Routine for creating a security context with a third service on behalf of the user

7. int aid_establish_context_using_client_delegate(fd, server_dn_in, server_dn_out, max_len_server_dn_out, received_delegation_fd, deleg_flag)

The above routine can be used to initiate a security context with a third application on behalf of the user.

Routine for viewing the remaining valid lifetime of the delegated credential

8. int aid_get_remaining_delegate_lifetime(int fd)

Routine to view the remaining life time of the delegated certificate. Returns results in seconds.

Delegation routine descriptions

· int aid_establish_context_serverside_with_delegate(fd, clientName, max_len_clientName, type_flag)

Input Parameters:

fd:
Socket File descriptor

max_len_clientName:
Max length of the connecting client's DN.

type_flag:
AID_GSI, AID_KERBEROS

Output Parameters:

clientName:
Returns the DN of the connected client.

Internal Descriptions:

The received delegated certificate is stored in an internal array with socket file description as the locator information. In the future when the delegated certificate needs to be used, it can be accessed by using the socke file description id (fd) from where the delegation has been received.

If the delegated certificate needs to be used by another process it can be exported using aid_export_delegate(fd). Another process running in the same unix account will be able to import it.

aid_close(fd) will close all the related memory structure of that particular instance.

Sample Execution code:

 char clientName[200];

int client_type_flag = AID_GSI;

/* Accept context serverside */

if (aid_establish_context_serverside_with_delegate(fd, clientName, 200, client_type_flag) < 0) {

 // error

}

/* print received connecting client DN */

printf(" Accepted connection from: \"%s\"\n", clientName);

· int aid_establish_context_clientside_without_server_dn(int fd, char* serverName, int max_len_serverName, int deleg_flag,int type_flag)

Input Parameters:

fd:
Socket File descriptor in which the security context is to be created.

max_len_serverName:
maximum length of server DN that client is willing to accept.

deleg_flag:

Should be equal to 1 if client is willing to delegate credential to server.

type_flag:
AID_GSI or AID_KERBEROS

Output Parameters:

serverName:
receives a string from server containing the DN of server.

Internal Description:

This routine complements aid_establish_context_clientside() . It eliminates the need for the client to provide the Server DN while establishing context and rather returns the server DN in serverName. However in this process only the client is authenticated by the server and the server isn't authenticated bythe client. The client may later view the DN of the server from serverName and decide if it would like to continue transaction.

Sample Execution Code:

char serverName[200];

int deleg_flag = 0;

int type_flag = AID_GSI;

/* Establish context */

if (aid_establish_context_clientside_without_server_dn(fd, serverName, 200, deleg_flag, type_flag) < 0) {

 (void) close(s);

 return -1;

}

/* print received server DN */

printf(" Accepted connection from: \"%s\"\n", serverName);

· int aid_init_delegation(int fd, OM_uint32 delegation_time)

Input Parameters:

fd:
Socket File descriptor where the security context has been created with server to whom the credential will be delegated to

delegation_time:
requested delegation time for delegated proxy credential

Output Parameters:

None

Internal Descriptions:

This method is called after a security context has been initiated between the client and server and if one of the party is interested in delegating his credential. The server accepts the delegation using aid_accept_delegation(). The delegated credential is created in the server and signed by the client validating that it has been authorized by the client.

Sample Execution Code:

int cert_time = 10; // remaining valid lifetime of the certificate in minutes

if (aid_init_delegation(s,cert_time) < 0)

printf("delegation initialization failed \n");

}

printf(“ credential delegated \n”);

 int aid_accept_delegation(int fd)

Input Parameters:

fd:
Socket File descriptor where the security context has been initiated with the client willing to delegate credential.

Internal Description:

This method is called to accept an initiating delegation by the client. The received delegated credential is stored internally in aid library in an credential array. This credential can later be accessed from the internal array by the socket file descriptor from where the credential has been received. The received credential may be used for further initiating context with a third server by using aid_establish_context_using_client_delegate(). Or be exported using aid_export_delegate() for use by another process running under the same unix uid.

Sample Execution Code:

if (aid_accept_delegation(fd) < 0) {

//error

}

printf("aid_accept_delegation() - delelgation accepted \n");

· int aid_export_delegate(int fd)

Input Parameters:

fd:
Socket File descriptor where the security context has been initiated with the client that delegated the credential.

Internal Description:

The delegated credential is serialized to /tmp directory and its file path is saved in the internal array pointed with the socke file description from where the delegated credential has been received. aid_import_credential() can then be used later

Sample Execution Code:

/* prerequisite server should have delegated certificate */

if (aid_export_delegate(fd) < 0) {

 //error

 }

printf("succeeded exporting delegate certificate\n");

· int aid_import_delegate(int fd)

Input Parameters:

fd:
Socket File descriptor where the security context has been initiated with the client that delegated the credential.

Internal Description:

The serialized delegated credential is retrieved from disk and the credential is stored in an internal array.

Sample Execution Code:

if (aid_import_delegate(fd) < 0) {

 // error

}

printf("succeeded importing delegate certificate \n");

· int aid_establish_context_using_client_delegate(fd, server_dn_in,server_dn_out, max_len_server_dn_out, received_delegation_fd, deleg_flag)

Input Parameters:

fd:
Socket file descriptor between the server and the next server to be delegated to

server_dn_in: Server DN to which the context is being established to . It can as be specified as NULL if no DN is to be sent.

server_dn_out: Receives the DN of the connected Server

max_len_server_dn_out:
maximum length of server_dn_out that the client is willing to accept

received_delegation_fd :
Socket file descriptor from where the delegation has been received.

deleg_flag:
Should be 1 if further delegation of credential should take place.

Internal Description:

This routine is initiated by a server to establish a secure context with another server by using a credential delegated to it. The connection on the other side is accepted by the function aid_establish_context_serverside() if not delegated or aid_establish_context_serverside_with_delegate() if delegation has been initiated.

The call can be initiated with passing the DN of server or without. If DN of server is passed then verification is of server DN is make along with the provided server DN. If it does not match then connection is rejected. If DN of server is not provided in server_dn_in (NULL) then the DN of connected server is returned in server_dn_out and that can be verified by application.

Sample Execution Code:

char *service_name = DnofServerToBeConnected;

/* Establish context */

if (aid_establish_context_using_client_delegate(s2, NULL, received_server_dn, 200, prev_s, deleg_flag) < 0) {

 (void) close(s2);

 return -1;

}

printf("context establish\n");

· int aid_get_remaining_delegate_lifetime(int fd)

Input Parameters:

fd:
Socket File descriptor where the security context has been initiated with the client that delegated the credential.

Output Paramerters:

return value:
number of seconds till the certificate is valid.

Internal Description:

Routine called to check the remaining validity of the delegated certificate.

Sample Execution Code:

int life;

life=aid_get_remaining_delegate_lifetime(fd);

printf("remaining life : %i \n",life); /* result of the remaining lifetime of the certificate validity is printed in seconds.

Possible use of GSI within SRB (For discussion)

User logs into an SRB of his local Zone and attempts to retrieve a file stored in Remote Zone.

User

Grid App2

Grid App1

SRB 1

SRB2

Grid App3

MCAT

West

East

Europe

MCAT

West

MCAT

East

MCAT

Europe

VO user

